摘要
This article presents a new type of whitening filter (allowing the “passing” of some noise sources) applied to process the data recorded in LIGO’s GW150914 and GW151226 events. This new analysis shows that in the GW150914 event, the signals from the collision of two black holes are very similar to the 32.5 Hz noise sources observed in both of LIGO’s detectors. It also points out that these 32.5 Hz noise sources are powered by a 30 Hz sub harmonic, coming from the 60 Hz power system. In the GW1226 event, the same analysis points out that the NR template is very similar to the 120 Hz noise source. Therefore, the signals recorded in these events were probably generated by some small changes with the 60 Hz frequency in the US power grid. This can be caused, for example, by a power variation in the DC link, which can appear in both detectors in the same 10 ms time window. As this kind of power grid occurrence did not change the voltage levels, it may have gone unnoticed by LIGO’s electrical power supply’s monitoring system.
This article presents a new type of whitening filter (allowing the “passing” of some noise sources) applied to process the data recorded in LIGO’s GW150914 and GW151226 events. This new analysis shows that in the GW150914 event, the signals from the collision of two black holes are very similar to the 32.5 Hz noise sources observed in both of LIGO’s detectors. It also points out that these 32.5 Hz noise sources are powered by a 30 Hz sub harmonic, coming from the 60 Hz power system. In the GW1226 event, the same analysis points out that the NR template is very similar to the 120 Hz noise source. Therefore, the signals recorded in these events were probably generated by some small changes with the 60 Hz frequency in the US power grid. This can be caused, for example, by a power variation in the DC link, which can appear in both detectors in the same 10 ms time window. As this kind of power grid occurrence did not change the voltage levels, it may have gone unnoticed by LIGO’s electrical power supply’s monitoring system.
作者
Policarpo Yōshin Ulianov
Xiaochun Mei
Ping Yu
Policarpo Yōshin Ulianov;Xiaochun Mei;Ping Yu(Equalix Tecnologia LTDA, Florianópolis, SC, Brazil;Institute of Innovative Physics, Fuzhou, Fujian, China;Cognitech Calculating Technology Institute, Los Angeles, CA, USA)