摘要
According to the classical mechanics the energy of a celestial body circulating in the solar system is a constant term. This energy is defined by the masses product of the larger and smaller body entering into a mutual attraction as well as the size of the major semiaxis characteristic for the corresponding Kepler orbit. A special situation concerns the planet interaction with the Sun because of a systematic decrease of the Sun mass due to the luminosity effect. The aim of the paper is to point out that even in the case of perfectly constant interacting masses the energy of the moving body should decrease when a quantum treatment of the body motion is considered. The rate of the energy decrease is extremely small, nevertheless it gives a shortening of the distance between the interacting bodies leading to a final effect of a touch of the larger body and a smaller one.
According to the classical mechanics the energy of a celestial body circulating in the solar system is a constant term. This energy is defined by the masses product of the larger and smaller body entering into a mutual attraction as well as the size of the major semiaxis characteristic for the corresponding Kepler orbit. A special situation concerns the planet interaction with the Sun because of a systematic decrease of the Sun mass due to the luminosity effect. The aim of the paper is to point out that even in the case of perfectly constant interacting masses the energy of the moving body should decrease when a quantum treatment of the body motion is considered. The rate of the energy decrease is extremely small, nevertheless it gives a shortening of the distance between the interacting bodies leading to a final effect of a touch of the larger body and a smaller one.
作者
Stanisław Olszewski
Stanisław Olszewski(Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland)