期刊文献+

An SLC-Type e<sup>+</sup/>e<sup>−</sup/>/γγ Facility at a Future Circular Collider

An SLC-Type e<sup>+</sup/>e<sup>−</sup/>/γγ Facility at a Future Circular Collider
下载PDF
导出
摘要 It is proposed to place the arcs of an SLC-type facility inside the tunnel of a Future Circular Collider (FCC). Accelerated by a linear accelerator (linac), electron and positron beams would traverse the bending arcs in opposite directions and collide at centre-of-mass energies considerably exceeding those attainable at circular e+e−colliders. The proposed SLC-type facility would have the same luminosity as a conventional two-linace e+e−collider. Using an optical free-electron laser, the facility could be converted into a γγ collider. A superconducting L-band linac at the proposed facility may form a part of the injector chain for a 100-TeV proton collider in the FCC tunnel. The whole accelerator complex would serve as a source of e+e−, γγ, pp and ep interactions. The L-band linac could also be used to produce high-intensity neutrino, kaon and muon beams for fixed-target experiments, as well as X-ray free-electron laser (XFEL) photons for applications in material science and medicine. It is proposed to place the arcs of an SLC-type facility inside the tunnel of a Future Circular Collider (FCC). Accelerated by a linear accelerator (linac), electron and positron beams would traverse the bending arcs in opposite directions and collide at centre-of-mass energies considerably exceeding those attainable at circular e+e−colliders. The proposed SLC-type facility would have the same luminosity as a conventional two-linace e+e−collider. Using an optical free-electron laser, the facility could be converted into a γγ collider. A superconducting L-band linac at the proposed facility may form a part of the injector chain for a 100-TeV proton collider in the FCC tunnel. The whole accelerator complex would serve as a source of e+e−, γγ, pp and ep interactions. The L-band linac could also be used to produce high-intensity neutrino, kaon and muon beams for fixed-target experiments, as well as X-ray free-electron laser (XFEL) photons for applications in material science and medicine.
出处 《Journal of Modern Physics》 2017年第1期1-16,共16页 现代物理(英文)
关键词 Particle COLLIDER HIGGS PHYSICS SUPERCONDUCTING LINAC Particle Collider Higgs Physics Superconducting Linac
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部