摘要
The accelerated expansion of our universe results from properties of dark matter particles deduced from Space-Time Quantization. This theory accounts for all possible elementary particles by considering a quantum of length a in addition to c and h. It appears that dark matter particles allow for fusion and fission processes. The resulting equilibrium enables the cosmic dark matter gas to produce dark energy in an adaptive way. It keeps the combined matter-energy density at a constant level, even when space is expanding. This accounts for the cosmological constant Λand the accelerated expansion of space without requiring any negative pressure. The Big Bang is related to G, c, h and a. It started with a “primeval photon” and led to the cosmic matter-antimatter asymmetry as well as inflation.
The accelerated expansion of our universe results from properties of dark matter particles deduced from Space-Time Quantization. This theory accounts for all possible elementary particles by considering a quantum of length a in addition to c and h. It appears that dark matter particles allow for fusion and fission processes. The resulting equilibrium enables the cosmic dark matter gas to produce dark energy in an adaptive way. It keeps the combined matter-energy density at a constant level, even when space is expanding. This accounts for the cosmological constant Λand the accelerated expansion of space without requiring any negative pressure. The Big Bang is related to G, c, h and a. It started with a “primeval photon” and led to the cosmic matter-antimatter asymmetry as well as inflation.