期刊文献+

<i>Ab-Initio</i>Computations of Electronic, Transport, and Structural Properties of <i>zinc-blende</i>Beryllium Selenide (<i>zb</i>-BeSe)

<i>Ab-Initio</i>Computations of Electronic, Transport, and Structural Properties of <i>zinc-blende</i>Beryllium Selenide (<i>zb</i>-BeSe)
下载PDF
导出
摘要 We report results from several ab-initio computations of electronic, transport and bulk properties of zinc-blende beryllium selenide (zb-BeSe). Our nonrelativistic calculations utilized a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). The key distinction of our calculations from other DFT calculations is the implementation of the Bagayoko, Zhao and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), in the LCAO formalism. Our calculated, indirect band gap is 5.46 eV, from Γto a conduction band minimum between Г and X, for a room temperature lattice constant of 5.152 Å. Available, room temperature experimental band gaps of 5.5 (direct) and 4 - 4.5 (unspecified) point to the need for additional measurements of this gap. Our calculated bulk modulus of 92.35 GPa is in excellent agreement with experiment (92.2 ±?1.8 GPa). Our predicted equilibrium lattice constant and band gap, at zero temperature, are 5.0438 Åand 5.4 eV, respectively. We report results from several ab-initio computations of electronic, transport and bulk properties of zinc-blende beryllium selenide (zb-BeSe). Our nonrelativistic calculations utilized a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). The key distinction of our calculations from other DFT calculations is the implementation of the Bagayoko, Zhao and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), in the LCAO formalism. Our calculated, indirect band gap is 5.46 eV, from Γto a conduction band minimum between Г and X, for a room temperature lattice constant of 5.152 Å. Available, room temperature experimental band gaps of 5.5 (direct) and 4 - 4.5 (unspecified) point to the need for additional measurements of this gap. Our calculated bulk modulus of 92.35 GPa is in excellent agreement with experiment (92.2 ±?1.8 GPa). Our predicted equilibrium lattice constant and band gap, at zero temperature, are 5.0438 Åand 5.4 eV, respectively.
出处 《Journal of Modern Physics》 2017年第4期552-566,共15页 现代物理(英文)
关键词 Density Functional Theory (DFT) LDA Ab-Initio Calculations Band Gap BZW-EF Method Density Functional Theory (DFT) LDA Ab-Initio Calculations Band Gap BZW-EF Method
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部