期刊文献+

Comparison of Surface Modification of CR-39 Polymer Film Using RF and DC Glow Discharges Plasma

Comparison of Surface Modification of CR-39 Polymer Film Using RF and DC Glow Discharges Plasma
下载PDF
导出
摘要 Surfaces of optical elements are deposited by antireflection coatings (ARCs) to decrease the reflection of light. Surface needs treatment before depositing the ARC one of treatment processes by plasma for adhesion improvement and surface hardening. A comparison of RF and DC glow discharges treated CR-39 polymer films gives insight into the mechanism of these surface processes. The surface properties of the plasma-treated samples are examined by microscopy techniques include contact angle measurements, scanning electron microscopy (SEM), atomic force microscopy (AFM), infrared (IR) spectroscopy and refractive index measurements. Results show that the plasma treatment modifies the polymer surface in both composition and morphology. It is found that the surface wettability is enhanced after plasma treatment. It is found that, RF plasma is more effective than DC plasma in CR-39 surface modification, as it implants more oxygen atoms into the surface and makes the contact angle declining to a lower level. Surfaces of optical elements are deposited by antireflection coatings (ARCs) to decrease the reflection of light. Surface needs treatment before depositing the ARC one of treatment processes by plasma for adhesion improvement and surface hardening. A comparison of RF and DC glow discharges treated CR-39 polymer films gives insight into the mechanism of these surface processes. The surface properties of the plasma-treated samples are examined by microscopy techniques include contact angle measurements, scanning electron microscopy (SEM), atomic force microscopy (AFM), infrared (IR) spectroscopy and refractive index measurements. Results show that the plasma treatment modifies the polymer surface in both composition and morphology. It is found that the surface wettability is enhanced after plasma treatment. It is found that, RF plasma is more effective than DC plasma in CR-39 surface modification, as it implants more oxygen atoms into the surface and makes the contact angle declining to a lower level.
出处 《Journal of Modern Physics》 2017年第12期2021-2033,共13页 现代物理(英文)
关键词 Surface MODIFICATION by PLASMA RF DISCHARGE DC DISCHARGE CR-39 POLYMER Film Surface Modification by Plasma RF Discharge DC Discharge CR-39 Polymer Film
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部