期刊文献+

Mass Constituents of a Flat Lattice Multiverse: Conclusion from Similarity between Two Universal Numbers, the Rocksalt-Type 2<i>D</i>Madelung Constant and the Golden Mean 被引量:2

Mass Constituents of a Flat Lattice Multiverse: Conclusion from Similarity between Two Universal Numbers, the Rocksalt-Type 2<i>D</i>Madelung Constant and the Golden Mean
下载PDF
导出
摘要 In fairly good agreement with the consensus range of dark energy to matter this ratio of the critical density is suggested to be connected with the golden mean φ=0.6180339887, yielding for dark energy to matter mass fractions .?Assuming the baryonic matter to be only 4.432%, the ratio of matter to baryonic matter would be , and further the ratio of dark matter to baryonic one . If one subtracts from the dark matter a contribution of antimatter with the same mass of baryonic matter, according to the antigravity theories of Villata respectively Hajdukovic, the remaining mass ratio would yield . Replacing the “Madelung” constant α of Villata’s “lattice universe” by φ, one reaches again 1 + φas the ratio of the repulsive mass contribution to the attractive one. Assuming instead of a 3D lattice a flat 2D one of rocksalt type, the numerical similarity between the Madelung constant and φ−1 could not be just coincidence. The proposed scaling of the cosmological mass fractions with the square of the most irrational universal number φmay indicate that the chaotic cosmological processes have reached a quite stable equilibrium. This may be confirmed by another, but similar representation of the mass constituents by the Archimedes’ constant π, giving for respectively for the dark components . However, the intimate connection of φ with its reciprocal may ignite the discussion whether our universe is intertwined with another universe or even part of a multiverse with the dark constituents contributed from there. In fairly good agreement with the consensus range of dark energy to matter this ratio of the critical density is suggested to be connected with the golden mean φ=0.6180339887, yielding for dark energy to matter mass fractions .?Assuming the baryonic matter to be only 4.432%, the ratio of matter to baryonic matter would be , and further the ratio of dark matter to baryonic one . If one subtracts from the dark matter a contribution of antimatter with the same mass of baryonic matter, according to the antigravity theories of Villata respectively Hajdukovic, the remaining mass ratio would yield . Replacing the “Madelung” constant α of Villata’s “lattice universe” by φ, one reaches again 1 + φas the ratio of the repulsive mass contribution to the attractive one. Assuming instead of a 3D lattice a flat 2D one of rocksalt type, the numerical similarity between the Madelung constant and φ−1 could not be just coincidence. The proposed scaling of the cosmological mass fractions with the square of the most irrational universal number φmay indicate that the chaotic cosmological processes have reached a quite stable equilibrium. This may be confirmed by another, but similar representation of the mass constituents by the Archimedes’ constant π, giving for respectively for the dark components . However, the intimate connection of φ with its reciprocal may ignite the discussion whether our universe is intertwined with another universe or even part of a multiverse with the dark constituents contributed from there.
出处 《Journal of Modern Physics》 2018年第1期1-13,共13页 现代物理(英文)
关键词 UNIVERSAL NUMBERS Fractal NUMBERS Golden Mean Archimedes’ CONSTANT Fibonacci NUMBERS Madelung Constants Sommerfeld’s Fine Structure CONSTANT Euler Number LATTICE UNIVERSE Reciprocal UNIVERSE Cosmological MASS Fractions Hubble CONSTANT Gyromagnetic Factor Universal Numbers Fractal Numbers Golden Mean Archimedes’ Constant Fibonacci Numbers Madelung Constants Sommerfeld’s Fine Structure Constant Euler Number Lattice Universe Reciprocal Universe Cosmological Mass Fractions Hubble Constant Gyromagnetic Factor
  • 相关文献

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部