期刊文献+

On the Ultimate Fate of Massive Neutron Stars in an Ever Expanding Universe

On the Ultimate Fate of Massive Neutron Stars in an Ever Expanding Universe
下载PDF
导出
摘要 General theory of relativity predicts the central densities of massive neutron stars (-MANs) to be much larger than the nuclear density. In the absence of energy production, the lifetimes of MANs should be shorter that their low-mass counterparts. Yet neither black holes nor neutron stars, whose masses are between two and five solar masses have ever been observed. Also, it is not clear what happened to the old MANs that were created through the collapse of first generation of stars shortly after the Big Bang. In this article, it is argued that MANs must end as completely invisible objects, whose cores are made of incompressible quark-gluon-superfluids and that their effective masses must have doubled through the injection of dark energy by a universal scalar field at the background of supranuclear density. It turns out that recent glitch observations of pulsars and young neutron star systems and data from particle collisions at the LHC and RHIC are in line with the present scenario. General theory of relativity predicts the central densities of massive neutron stars (-MANs) to be much larger than the nuclear density. In the absence of energy production, the lifetimes of MANs should be shorter that their low-mass counterparts. Yet neither black holes nor neutron stars, whose masses are between two and five solar masses have ever been observed. Also, it is not clear what happened to the old MANs that were created through the collapse of first generation of stars shortly after the Big Bang. In this article, it is argued that MANs must end as completely invisible objects, whose cores are made of incompressible quark-gluon-superfluids and that their effective masses must have doubled through the injection of dark energy by a universal scalar field at the background of supranuclear density. It turns out that recent glitch observations of pulsars and young neutron star systems and data from particle collisions at the LHC and RHIC are in line with the present scenario.
机构地区 IWR
出处 《Journal of Modern Physics》 2018年第1期51-69,共19页 现代物理(英文)
关键词 Relativity: General Black Hole Physics Neutron Stars SUPERFLUIDITY QCD DARK Energy DARK Matter Relativity: General Black Hole Physics Neutron Stars Superfluidity QCD Dark Energy Dark Matter
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部