期刊文献+

Anisotropic Geodesic Fluid in Non-Comoving Spherical Coordinates

Anisotropic Geodesic Fluid in Non-Comoving Spherical Coordinates
下载PDF
导出
摘要 We start with a recently introduced spherically symmetric geodesic fluid model (arXiv: 1601.07030) whose energy-momentum tensor (EMT) in the comoving frame is dust-like with nontrivial energy flux. In the non-comoving energy frame (vanishing energy flux), the same EMT contains besides dust only radial pressure. We present Einstein’s equations together with the matter equations in static spherically symmetric coordinates. These equations are self-contained (four equations for four unknowns). We solve them analytically except for a resulting nonlinear ordinary differential equation (ODE) for the gravitational potential. This ODE can be rewritten as a Lienard differential equation which, however, may be transformed into a rational Abel differential equation of the first kind. Finally, we list some open mathematical problems and outline possible physical applications (galactic halos, dark energy stars) and related open problems. We start with a recently introduced spherically symmetric geodesic fluid model (arXiv: 1601.07030) whose energy-momentum tensor (EMT) in the comoving frame is dust-like with nontrivial energy flux. In the non-comoving energy frame (vanishing energy flux), the same EMT contains besides dust only radial pressure. We present Einstein’s equations together with the matter equations in static spherically symmetric coordinates. These equations are self-contained (four equations for four unknowns). We solve them analytically except for a resulting nonlinear ordinary differential equation (ODE) for the gravitational potential. This ODE can be rewritten as a Lienard differential equation which, however, may be transformed into a rational Abel differential equation of the first kind. Finally, we list some open mathematical problems and outline possible physical applications (galactic halos, dark energy stars) and related open problems.
出处 《Journal of Modern Physics》 2018年第2期207-214,共8页 现代物理(英文)
关键词 Einsteins Equations Stationary Solution ANISOTROPIC GEODESIC FLUID Non-Comoving Coordinates Spherical Symmetry Gravitational Potential Nonlinear Ordinary Differential Equation Einsteins Equations Stationary Solution Anisotropic Geodesic Fluid Non-Comoving Coordinates Spherical Symmetry Gravitational Potential Nonlinear Ordinary Differential Equation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部