期刊文献+

Superconductivity of Saturn Rings: Quantum Locking, Rings Disc Thickness and Its Time Creation

Superconductivity of Saturn Rings: Quantum Locking, Rings Disc Thickness and Its Time Creation
下载PDF
导出
摘要 The article demonstrates how rings disc of Saturn was created after appearance of the planetary magnetic field from superconducting iced particles of the protoplanetary cloud moving around planet by chaotic orbits. It is based on the fact that Saturn has magnetic field and the temperature of its vicinity is low enough to have superconductivity. Electromagnetic simulation estimates time of rings disc formation with the thickness about few meters from a few thousand years up to few tens of thousands of years. A rings disk has a stable structure located within magnetic equator of Saturn due to quantum locking of the particles by planetary magnetic field. Also may happened contribution to the rings disc from the debris of the moons migrated inward towards Saturn and particles of the frozen water coming from the geyser of the geologically active satellite (as Enceladus contributed to the E-ring). Suggested mechanism of the rings formation works even in case where only a small fraction of the particles poses superconductivity. Presented electromagnetic modeling of the role of superconducting iced particles of the rings disc origin, dynamics and evolution allow us to enrich the classical theories based on gravitational, mechanical, magnetohydrodynamic and plasma interactions. The article demonstrates how rings disc of Saturn was created after appearance of the planetary magnetic field from superconducting iced particles of the protoplanetary cloud moving around planet by chaotic orbits. It is based on the fact that Saturn has magnetic field and the temperature of its vicinity is low enough to have superconductivity. Electromagnetic simulation estimates time of rings disc formation with the thickness about few meters from a few thousand years up to few tens of thousands of years. A rings disk has a stable structure located within magnetic equator of Saturn due to quantum locking of the particles by planetary magnetic field. Also may happened contribution to the rings disc from the debris of the moons migrated inward towards Saturn and particles of the frozen water coming from the geyser of the geologically active satellite (as Enceladus contributed to the E-ring). Suggested mechanism of the rings formation works even in case where only a small fraction of the particles poses superconductivity. Presented electromagnetic modeling of the role of superconducting iced particles of the rings disc origin, dynamics and evolution allow us to enrich the classical theories based on gravitational, mechanical, magnetohydrodynamic and plasma interactions.
出处 《Journal of Modern Physics》 2018年第3期419-432,共14页 现代物理(英文)
关键词 ORIGIN of SATURN RINGS ORIGIN of PLANETARY RINGS SUPERCONDUCTIVITY of the PLANETARY RINGS Origin of Saturn Rings Origin of Planetary Rings Superconductivity of the Planetary Rings
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部