期刊文献+

A Possible Solution to the Disagreement about the Hubble Constant

A Possible Solution to the Disagreement about the Hubble Constant
下载PDF
导出
摘要 The current disagreement about the Hubble constant H0 was described as a “Crisis in Cosmology”, at the April (2018) Meeting of the American Physical Society, and hence its resolution is of utmost importance. This work proposes that the solution to the disagreement between the Planck Collaboration cosmic microwave background (CMB) value of H0, together with the very close BOSS Collaboration baryon acoustic oscillation (BAO) value, and the significantly higher value of H0 found by the SHOES Collaboration cosmic distance ladder (CDL) work, is due to the fact that the CMB and BAO values of H0 are not for an accelerating universe, as generally believed, but are actually the values for a decelerating universe. In contrast, the CDL value of H0 is indeed that for an accelerating universe. It is shown that by replacing the negative deceleration parameter in the expression for logH0 in the CDL work by a positive deceleration parameter, the value of H0 can be brought down to agree with the CMB and BAO lower values. There is a brief review of the author’s decelerating model based on the Einstein de Sitter universe, augmented by a model of dark energy that does not have a negative pressure, but instead has a non-dispersive index of refraction n, causing the speed of light through the dark energy of intergalactic space to be reduced to c/n. As reported earlier, this assumption is sufficient to accommodate the increase in apparent magnitude of the Type Ia supernovae (SNe Ia). Additional support for the model is presented, together with a proposal for astronomical falsification. The current disagreement about the Hubble constant H0 was described as a “Crisis in Cosmology”, at the April (2018) Meeting of the American Physical Society, and hence its resolution is of utmost importance. This work proposes that the solution to the disagreement between the Planck Collaboration cosmic microwave background (CMB) value of H0, together with the very close BOSS Collaboration baryon acoustic oscillation (BAO) value, and the significantly higher value of H0 found by the SHOES Collaboration cosmic distance ladder (CDL) work, is due to the fact that the CMB and BAO values of H0 are not for an accelerating universe, as generally believed, but are actually the values for a decelerating universe. In contrast, the CDL value of H0 is indeed that for an accelerating universe. It is shown that by replacing the negative deceleration parameter in the expression for logH0 in the CDL work by a positive deceleration parameter, the value of H0 can be brought down to agree with the CMB and BAO lower values. There is a brief review of the author’s decelerating model based on the Einstein de Sitter universe, augmented by a model of dark energy that does not have a negative pressure, but instead has a non-dispersive index of refraction n, causing the speed of light through the dark energy of intergalactic space to be reduced to c/n. As reported earlier, this assumption is sufficient to accommodate the increase in apparent magnitude of the Type Ia supernovae (SNe Ia). Additional support for the model is presented, together with a proposal for astronomical falsification.
机构地区 San Diego
出处 《Journal of Modern Physics》 2018年第9期1827-1837,共11页 现代物理(英文)
关键词 HUBBLE CONSTANT DISAGREEMENT CMB & BAO Determinations Decelerating INTERPRETATION CDL Determination & Modification Hubble Constant Disagreement CMB & BAO Determinations Decelerating Interpretation CDL Determination & Modification
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部