摘要
The gravitized vacuum is operationally defined as the vacuum of space sufficiently close to any gravitating massive body, or collection of bodies, such that its gravitational energy field strength and density are observed, or expected, to be greater than that of deep intergalactic space. It is hypothesized that the contributions to gravitational lensing and excess galactic/peri-galactic rotational inertia currently attributed to dark matter could be predictable effects of increased energy density, with corresponding mass effects, of a gravitized vacuum acting in the manner of a near-absolute zero superfluid. This hypothesis should be testable by an earth-based laboratory with the apparatus and procedure described herein.
The gravitized vacuum is operationally defined as the vacuum of space sufficiently close to any gravitating massive body, or collection of bodies, such that its gravitational energy field strength and density are observed, or expected, to be greater than that of deep intergalactic space. It is hypothesized that the contributions to gravitational lensing and excess galactic/peri-galactic rotational inertia currently attributed to dark matter could be predictable effects of increased energy density, with corresponding mass effects, of a gravitized vacuum acting in the manner of a near-absolute zero superfluid. This hypothesis should be testable by an earth-based laboratory with the apparatus and procedure described herein.