期刊文献+

Rindler Observer Sublimation

Rindler Observer Sublimation
下载PDF
导出
摘要 <p align="justify"> <span style="font-family:Verdana;">In this note, we propose that an object moving with proper constant acceleration, i.e., a Rindler observer experiences a sublimation (or evaporation) process. In this first proposal, we do not consider the backreaction due to the sublimation. We focus on charged matter particles for the discussion, but for simplicity, we present the quantization of the neutrally charged massive scalar field in Rindler space. The amplitude from the Minkowski observer perspective of detection of matter particles that have been emitted by a Rindler observer, or accelerated detector, is computed in a new fashion. We make a comparison between the Rindler observer sublimation and the black hole evaporation. We present three variants of a new experimental setup, and we show that in two of them, the Minkowski amplitude of detection of matter particles corresponds to that of a thermal process. There is one, however, where deviations from thermality can be found. It is numerically explored.</span> </p> <p align="justify"> <span style="font-family:Verdana;">In this note, we propose that an object moving with proper constant acceleration, i.e., a Rindler observer experiences a sublimation (or evaporation) process. In this first proposal, we do not consider the backreaction due to the sublimation. We focus on charged matter particles for the discussion, but for simplicity, we present the quantization of the neutrally charged massive scalar field in Rindler space. The amplitude from the Minkowski observer perspective of detection of matter particles that have been emitted by a Rindler observer, or accelerated detector, is computed in a new fashion. We make a comparison between the Rindler observer sublimation and the black hole evaporation. We present three variants of a new experimental setup, and we show that in two of them, the Minkowski amplitude of detection of matter particles corresponds to that of a thermal process. There is one, however, where deviations from thermality can be found. It is numerically explored.</span> </p>
作者 J. A. Rosabal J. A. Rosabal(Asia Pacific Center for Theoretical Physics, POSTECH, Pohang, Korea)
出处 《Journal of Modern Physics》 2020年第9期1372-1394,共23页 现代物理(英文)
关键词 Accelerated Detectors Unruh Effect Hawking Radiation QFT on Accelerated Frames Accelerated Detectors Unruh Effect Hawking Radiation QFT on Accelerated Frames
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部