摘要
The superconductivity in (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X</sub> high-entropy alloy is analyzed using the theory of strong-coupled superconductor. It is concluded that (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X </sub>is a strong coupled superconductor. The variation in the superconducting transition temperature from 7.9 K to 4.6 K as x increases from 0.2 to 0.84 arises because of the decrease in electronic band width due to localization and broadening of the band. It is suggested that the decrease in electronic band width is due to crystalline randomness which gives rise to the mobility edge.
The superconductivity in (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X</sub> high-entropy alloy is analyzed using the theory of strong-coupled superconductor. It is concluded that (NbTa)<sub>1-X</sub>(HfZrTi)<sub>X </sub>is a strong coupled superconductor. The variation in the superconducting transition temperature from 7.9 K to 4.6 K as x increases from 0.2 to 0.84 arises because of the decrease in electronic band width due to localization and broadening of the band. It is suggested that the decrease in electronic band width is due to crystalline randomness which gives rise to the mobility edge.