期刊文献+

A Physical Interpretation of Mass-Energy Equivalence Based on the Orthogonal Collision

A Physical Interpretation of Mass-Energy Equivalence Based on the Orthogonal Collision
下载PDF
导出
摘要 Einstein described the mass-energy equivalence as the most important result of special relativity. But more than a century after Einstein first derived the relationship between mass-energy equivalence (or mass-energy equation), questions left for people are how to understand that mass and energy are somehow equivalent, and how to give the dynamical process for the conversion from mass to energy (or vice versa). This paper first interprets the formula of mass-energy equivalence published by Einstein in 1905, and then gives the equivalence relationship of mass-energy transition based on the dynamics of particle orthogonal collision. As a result, the orthogonal collision of two high-energy mass particles can generate a huge mass-energy density, equivalent to the total energy of N new particles, which is a one-way dynamic process that generates new mass-energy density and new matter. This conversion of mass into energy has nothing to do with special relativity. Einstein described the mass-energy equivalence as the most important result of special relativity. But more than a century after Einstein first derived the relationship between mass-energy equivalence (or mass-energy equation), questions left for people are how to understand that mass and energy are somehow equivalent, and how to give the dynamical process for the conversion from mass to energy (or vice versa). This paper first interprets the formula of mass-energy equivalence published by Einstein in 1905, and then gives the equivalence relationship of mass-energy transition based on the dynamics of particle orthogonal collision. As a result, the orthogonal collision of two high-energy mass particles can generate a huge mass-energy density, equivalent to the total energy of N new particles, which is a one-way dynamic process that generates new mass-energy density and new matter. This conversion of mass into energy has nothing to do with special relativity.
作者 Weihong Qian Weihong Qian(School of Physics, Peking University, Beijing, China;Guangzhou Institute of Tropical and Marine Meteorology, CMA, Guangzhou, China)
出处 《Journal of Modern Physics》 2023年第7期1067-1086,共20页 现代物理(英文)
关键词 Mass-Energy Equivalence Orthogonal Collision Physical Interpretation Dynamical Process Special Relativity Mass-Energy Equivalence Orthogonal Collision Physical Interpretation Dynamical Process Special Relativity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部