期刊文献+

Effectiveness of Rice Husk and Sugarcane Bagasse Ashes Blended Cement in Improving Properties of Concrete

Effectiveness of Rice Husk and Sugarcane Bagasse Ashes Blended Cement in Improving Properties of Concrete
下载PDF
导出
摘要 This paper emphasized the use of rice husk ash (RHA) and sugarcane bagasse ash (SBA) in improving concrete properties, and also their combined effects on workability, compressive strength, flexural strength, permeability and water absorption capacity. Thus, in this study, the water-to-cement ratio was kept constant (0.45), the binder materials content for conventional mix was kept constant at (350 kg/m<sup>3</sup>) and the partial replacement of cement with RHASBA used was 5%, 10%, 15%, 20%, 25%, and 30% by weight of cement. The maximum compressive strength was noted at a 5% replacement level of cement with RHASBA. The Results showed that the optimum replacement of cement with RHASBA in concrete was 5%, which was found to increase the compressive strength by 15%, flexural strength by 3.4%, lowered permeability by 50%, lowered sorptivity by 11.34% as compared with control concrete at 90 days of curing time. The micro-structural test results further established that RHA and SBA have a high content of SiO<sub>2</sub> which enables them to be more reactive in concrete and also revealed that the presence of RHASBA depletes Ca(OH)<sub>2</sub> crystals, converting it into CaH<sub>2</sub>O<sub>4</sub>Si (C-S-H gel) leading to the strengthening of bond within the concrete matrix. This paper emphasized the use of rice husk ash (RHA) and sugarcane bagasse ash (SBA) in improving concrete properties, and also their combined effects on workability, compressive strength, flexural strength, permeability and water absorption capacity. Thus, in this study, the water-to-cement ratio was kept constant (0.45), the binder materials content for conventional mix was kept constant at (350 kg/m<sup>3</sup>) and the partial replacement of cement with RHASBA used was 5%, 10%, 15%, 20%, 25%, and 30% by weight of cement. The maximum compressive strength was noted at a 5% replacement level of cement with RHASBA. The Results showed that the optimum replacement of cement with RHASBA in concrete was 5%, which was found to increase the compressive strength by 15%, flexural strength by 3.4%, lowered permeability by 50%, lowered sorptivity by 11.34% as compared with control concrete at 90 days of curing time. The micro-structural test results further established that RHA and SBA have a high content of SiO<sub>2</sub> which enables them to be more reactive in concrete and also revealed that the presence of RHASBA depletes Ca(OH)<sub>2</sub> crystals, converting it into CaH<sub>2</sub>O<sub>4</sub>Si (C-S-H gel) leading to the strengthening of bond within the concrete matrix.
作者 Johnson Adegaye Adebola Catherine Mayowa Ikumapayi Chinwuba Arum Johnson Adegaye Adebola;Catherine Mayowa Ikumapayi;Chinwuba Arum(Civil Engineering Department, Federal University of Technology, Akure, Nigeria)
出处 《Journal of Modern Physics》 2023年第8期1-19,共10页 现代物理(英文)
关键词 Concrete Rice Husk Ash Sugarcane Bagasse Ash Compressive Strength PERMEABILITY SORPTIVITY Concrete Rice Husk Ash Sugarcane Bagasse Ash Compressive Strength Permeability Sorptivity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部