摘要
Is the wave-function a physical reality traveling through our apparatus? Is it a real wave, or it is only a mathematical tool for calculating probabilities of results of measurements? Different interpretations of the quantum mechanics (QM) assume different answers to this question. It is shown in this article that the assumption that the wave-function is a real wave entails a contradiction with the predictions of the QM, when the special relativity is invoked. Therefore, this text concentrates on interpretations that conjecture that the reality that moves in our apparatuses is particles, and they move under the constraints of the wave-function. The de Broglie-Bohm interpretation, which matches this picture, assumes that the particle travels along a continuous trajectory. However, the idea of continuous trajectories was proved to lead to a contradiction with the quantum predictions. Therefore this interpretation is not considered here. S. Gao conjectured that the particle is in a permanent random and discontinuous motion (RDM). As it jumps all the time from place to place, the total set of occupied positions at a certain time is given by the absolute square of the wave-function. As motivation for his idea, Gao argued that if a charged particle were simultaneously in two or more locations at the same time, the copies of the particle would repel one another, destroying the wave-function. It is proved here that the quantum formalism renders this motivation wrong. Although refuting this motivation, the RDM interpretation is examined here. A couple of problems of this interpretation are examined and it is proved that they don’t lead to any observable contradictions with the QM predictions, except one problem which seems to have no solution. In all, it appears that none of the wide-spread interpretations of the QM is free of contradictions.
Is the wave-function a physical reality traveling through our apparatus? Is it a real wave, or it is only a mathematical tool for calculating probabilities of results of measurements? Different interpretations of the quantum mechanics (QM) assume different answers to this question. It is shown in this article that the assumption that the wave-function is a real wave entails a contradiction with the predictions of the QM, when the special relativity is invoked. Therefore, this text concentrates on interpretations that conjecture that the reality that moves in our apparatuses is particles, and they move under the constraints of the wave-function. The de Broglie-Bohm interpretation, which matches this picture, assumes that the particle travels along a continuous trajectory. However, the idea of continuous trajectories was proved to lead to a contradiction with the quantum predictions. Therefore this interpretation is not considered here. S. Gao conjectured that the particle is in a permanent random and discontinuous motion (RDM). As it jumps all the time from place to place, the total set of occupied positions at a certain time is given by the absolute square of the wave-function. As motivation for his idea, Gao argued that if a charged particle were simultaneously in two or more locations at the same time, the copies of the particle would repel one another, destroying the wave-function. It is proved here that the quantum formalism renders this motivation wrong. Although refuting this motivation, the RDM interpretation is examined here. A couple of problems of this interpretation are examined and it is proved that they don’t lead to any observable contradictions with the QM predictions, except one problem which seems to have no solution. In all, it appears that none of the wide-spread interpretations of the QM is free of contradictions.
作者
Sofia D. Wechsler
Sofia D. Wechsler(Independent Researcher, Kiryat Motzkin, Israel)