摘要
Solid polymer electrolytes (SPEs) of polyacrylamide-co-acrylic acid (PAA) as the polymer host and zinc acetate (ZnA) as an ionic dopant were prepared using a single solvent by the solution casting technique. The amorphous and crystalline structures of film were investigated by X-ray diffraction (XRD). The surface morphology of samples was examined by scanning electron microscopy (SEM). The composition and complex formation of films were characterized by Fourier transform infrared (FTIR) spectroscopy. The conductivity of the PAA-ZnA films was determined by electrochemical impedance spectroscopy. According to the XRD and FTIR analyses, all electrolyte films were in amorphous state and the existence of interaction between Zn2+ cations and the PAA structure confirms that the film was successfully prepared. The SEM observations reveal that the electrolyte films appeared to be rough and flat with irregularly shaped surfaces. The highest ionic conductivity (σ) of 1.82 × 10-5 Scm-1 was achieved at room temperature (303 K) for the sample containing 10 wt % ZnA.
Solid polymer electrolytes (SPEs) of polyacrylamide-co-acrylic acid (PAA) as the polymer host and zinc acetate (ZnA) as an ionic dopant were prepared using a single solvent by the solution casting technique. The amorphous and crystalline structures of film were investigated by X-ray diffraction (XRD). The surface morphology of samples was examined by scanning electron microscopy (SEM). The composition and complex formation of films were characterized by Fourier transform infrared (FTIR) spectroscopy. The conductivity of the PAA-ZnA films was determined by electrochemical impedance spectroscopy. According to the XRD and FTIR analyses, all electrolyte films were in amorphous state and the existence of interaction between Zn2+ cations and the PAA structure confirms that the film was successfully prepared. The SEM observations reveal that the electrolyte films appeared to be rough and flat with irregularly shaped surfaces. The highest ionic conductivity (σ) of 1.82 × 10-5 Scm-1 was achieved at room temperature (303 K) for the sample containing 10 wt % ZnA.