期刊文献+

Evaluation of the Marginal Adaptation in Metal Crowns Using CAD/CAM and Manual Wax Patterns

Evaluation of the Marginal Adaptation in Metal Crowns Using CAD/CAM and Manual Wax Patterns
下载PDF
导出
摘要 The aim of this study is to evaluate the maximum and minimum distances between the model and the cast crown of three techniques using Scanning Electron Microscopy (SEM). Three technique groups were used for this study: group A (control), traditional manual wax patterns;group B, dipping wax patterns;group C, resin patterns made with CAD/CAM. For each group, 10 samples were made using the same model, and then metal cast. Marginal accuracies of the samples were evaluated by performing gap measurements using SEM with a magnification of 1200× (minimum distance). The data were statistically analyzed using the one-way analysis of variance (ANOVA) at the 0.05 significance level. The average (standard deviation) of the minimum distance [μm] was 22.5 (12.1), 9.9 (4.3), and 14.7 (6.6), in groups A, B, and C, respectively. The average standard deviation of gap area [μm2] was 21667.2 (3476.4), 9906.4 (1512.1), and 16048.8 (8123). In the minimum distance comparison, groups A and B (p = 0.006) showed statistically significant results. In the gap area comparison, there was no statistical significance among groups A, B, and C (p = 0.174). The marginal adaptations of all three techniques were within a reported clinically acceptable range of margin. The aim of this study is to evaluate the maximum and minimum distances between the model and the cast crown of three techniques using Scanning Electron Microscopy (SEM). Three technique groups were used for this study: group A (control), traditional manual wax patterns;group B, dipping wax patterns;group C, resin patterns made with CAD/CAM. For each group, 10 samples were made using the same model, and then metal cast. Marginal accuracies of the samples were evaluated by performing gap measurements using SEM with a magnification of 1200× (minimum distance). The data were statistically analyzed using the one-way analysis of variance (ANOVA) at the 0.05 significance level. The average (standard deviation) of the minimum distance [μm] was 22.5 (12.1), 9.9 (4.3), and 14.7 (6.6), in groups A, B, and C, respectively. The average standard deviation of gap area [μm2] was 21667.2 (3476.4), 9906.4 (1512.1), and 16048.8 (8123). In the minimum distance comparison, groups A and B (p = 0.006) showed statistically significant results. In the gap area comparison, there was no statistical significance among groups A, B, and C (p = 0.174). The marginal adaptations of all three techniques were within a reported clinically acceptable range of margin.
出处 《Microscopy Research》 2015年第2期26-32,共7页 显微镜研究(英文)
关键词 MARGINAL Adaptation CAD/CAM METAL CAPS WAX Pattern Marginal Adaptation CAD/CAM Metal Caps Wax Pattern
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部