摘要
The fish Prochilodus lineatus (Characiformes, Prochilodontidae), in addition to being a good bioindicator, is also of economic and ecological importance with a broad distribution in the neotropics. Ecotoxicology examines the interaction between environmental chemistry and biota;and in this study we assess alterations of bile and glycogen levels in the fish liver, organ responsible for detoxification, biotransformation and storing nutrients, such as glycogen, and for secreting bile. Fish were separated in three groups to examine the damage caused by the exposure to waters from Lago Azul-Rio Claro-SP and containing diluted biodegradable detergents in comparison to a control group (chlorinated water from an artesian well of UNESP-Campus Rio Claro). A histological analysis was performed on HE and PAS stained sections. The identification of structural changes and the assessment of the area occupied by bile and glycogen were carried out with the software ImageJ, showing that the liver was affected morphologically (cell vacuolization, peripherals nuclei, for example) and problems in bile release and production and storage of glycogen.
The fish Prochilodus lineatus (Characiformes, Prochilodontidae), in addition to being a good bioindicator, is also of economic and ecological importance with a broad distribution in the neotropics. Ecotoxicology examines the interaction between environmental chemistry and biota;and in this study we assess alterations of bile and glycogen levels in the fish liver, organ responsible for detoxification, biotransformation and storing nutrients, such as glycogen, and for secreting bile. Fish were separated in three groups to examine the damage caused by the exposure to waters from Lago Azul-Rio Claro-SP and containing diluted biodegradable detergents in comparison to a control group (chlorinated water from an artesian well of UNESP-Campus Rio Claro). A histological analysis was performed on HE and PAS stained sections. The identification of structural changes and the assessment of the area occupied by bile and glycogen were carried out with the software ImageJ, showing that the liver was affected morphologically (cell vacuolization, peripherals nuclei, for example) and problems in bile release and production and storage of glycogen.