摘要
A stationary loudness model has been built up on the basis of the former ISO 226: 1987 concerning equal-loudness-level contours. The loudness and loudness level expressions derived in the study include the same parameters as used when determining the equal-loudness-level contours of the former ISO standard. However, as an additional main idea, a loudness summation rule has been proposed in the study. Moreover, the loudness expressions have been normalised to give the same values for people who have a similar sense of hearing. It has also been found that the loudness expressions include basically two different weightings. The first weighting is a conservative frequency weighting in the domain of sound pressure level, and the second weighting consists of coefficients applied to the weighted sound pressure levels. The latter have the greatest effect on the very low-frequency range. Finally, the paper includes a new way to use the A-weighting which takes into account the compressed character of the equal-loudness-level contours at the low frequency range. This method remarkably transforms the character of the A-weighting as a measure for low-frequency environmental noise.
A stationary loudness model has been built up on the basis of the former ISO 226: 1987 concerning equal-loudness-level contours. The loudness and loudness level expressions derived in the study include the same parameters as used when determining the equal-loudness-level contours of the former ISO standard. However, as an additional main idea, a loudness summation rule has been proposed in the study. Moreover, the loudness expressions have been normalised to give the same values for people who have a similar sense of hearing. It has also been found that the loudness expressions include basically two different weightings. The first weighting is a conservative frequency weighting in the domain of sound pressure level, and the second weighting consists of coefficients applied to the weighted sound pressure levels. The latter have the greatest effect on the very low-frequency range. Finally, the paper includes a new way to use the A-weighting which takes into account the compressed character of the equal-loudness-level contours at the low frequency range. This method remarkably transforms the character of the A-weighting as a measure for low-frequency environmental noise.