期刊文献+

A Study on Propagation of Waves in a Transversely Isotropic Poroelastic Layer Bounded between Two Viscous Liquids

A Study on Propagation of Waves in a Transversely Isotropic Poroelastic Layer Bounded between Two Viscous Liquids
下载PDF
导出
摘要 Propagation of Love waves in a transversely isotropic poroelastic layer bounded between two compressible viscous liquids is presented. The equations of motion in a transversely isotropic poroelastic solid are formulated in the framework of Biot’s theory. A closed-form solution for the propagation of Love waves is obtained in a transversely isotropic poroelastic layer. The complex frequency equation for phase velocity and attenuation of Love waves is derived for a transversely isotropic poroelastic layer when it is bounded between two viscous liquids and the results are compared with that of the poroelastic layer. The effect of viscous liquids on the propagation of Love waves is discussed. It is observed that the presence of viscous liquids decreases phase velocity in both transversely isotropic poroelastic layer and poroelastic layer. Results related to the case without viscous liquids have been compared with some of the earlier results and comparison shows good agreement. Propagation of Love waves in a transversely isotropic poroelastic layer bounded between two compressible viscous liquids is presented. The equations of motion in a transversely isotropic poroelastic solid are formulated in the framework of Biot’s theory. A closed-form solution for the propagation of Love waves is obtained in a transversely isotropic poroelastic layer. The complex frequency equation for phase velocity and attenuation of Love waves is derived for a transversely isotropic poroelastic layer when it is bounded between two viscous liquids and the results are compared with that of the poroelastic layer. The effect of viscous liquids on the propagation of Love waves is discussed. It is observed that the presence of viscous liquids decreases phase velocity in both transversely isotropic poroelastic layer and poroelastic layer. Results related to the case without viscous liquids have been compared with some of the earlier results and comparison shows good agreement.
出处 《Open Journal of Acoustics》 2019年第1期1-12,共12页 声学期刊(英文)
关键词 Viscosity LOVE Waves Wave Number DISSIPATION Coefficient Transversely ISOTROPIC POROELASTIC Layer Viscosity Love Waves Wave Number Dissipation Coefficient Transversely Isotropic Poroelastic Layer
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部