期刊文献+

Efficient Electrochemical Removal of Ammonia with Various Cathodes and Ti/RuO<sub>2</sub>-Pt Anode

Efficient Electrochemical Removal of Ammonia with Various Cathodes and Ti/RuO<sub>2</sub>-Pt Anode
下载PDF
导出
摘要 Electrochemical oxidation of ammonia was studied with an objective to enhance the selectivity of ammonia to nitrogen gas and to remove the by-products in an undivided electrochemical cell, in which various cathodes and Ti/RuO 2-Pt anode were assembled. In the present study, anodic oxidation of ammonia and cathodic reduction of by-products were achieved, especially with Cu/Zn as cathode. In the presence of 1.0 g/L NaCl the ammonia-N decreased from 100.0 to 0 after 120 min electrolysis at current density of 30 mA/cm2, and no nitrite was detected in the treated solution. The lowest amount of nitrate was formed with Cu/Zn as cathode during electrolysis due to its high reduction ability. Initial pH range from 7 and 9 and uncontrolled temperature were favorable for electrochemical ammonia oxidation and the ammonia oxidation rates with Cu/Zn cathode was higher than that with Ti and Fe cathode. The reduction rate increased with increasing current density in the range of 5 - 50 mA/cm2. As ammonia could be completely removed by the simultaneous oxidation and reduction in this study, it is suitable for deep treatment of ammonia polluted water. Electrochemical oxidation of ammonia was studied with an objective to enhance the selectivity of ammonia to nitrogen gas and to remove the by-products in an undivided electrochemical cell, in which various cathodes and Ti/RuO 2-Pt anode were assembled. In the present study, anodic oxidation of ammonia and cathodic reduction of by-products were achieved, especially with Cu/Zn as cathode. In the presence of 1.0 g/L NaCl the ammonia-N decreased from 100.0 to 0 after 120 min electrolysis at current density of 30 mA/cm2, and no nitrite was detected in the treated solution. The lowest amount of nitrate was formed with Cu/Zn as cathode during electrolysis due to its high reduction ability. Initial pH range from 7 and 9 and uncontrolled temperature were favorable for electrochemical ammonia oxidation and the ammonia oxidation rates with Cu/Zn cathode was higher than that with Ti and Fe cathode. The reduction rate increased with increasing current density in the range of 5 - 50 mA/cm2. As ammonia could be completely removed by the simultaneous oxidation and reduction in this study, it is suitable for deep treatment of ammonia polluted water.
出处 《Open Journal of Applied Sciences》 2012年第4期241-247,共7页 应用科学(英文)
关键词 ELECTROCHEMICAL Oxidation AMMONIA NITRATE CU/ZN Sodium Chloride Electrochemical Oxidation Ammonia Nitrate Cu/Zn Sodium Chloride
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部