摘要
Fabrication of nanocomposites from immiscible polymer blend system has been represented in this work. A new type of natural clay named Halloysite nanotubes (HNTs) are modified by Polyethyleneimine (PEI) and these PEI grafted HNTs are incorporated into the immiscible blend system during melt mixing process to prepare halloysite based nanocomposites. Fourier Transform Infrared Spectroscopy (FTIR) study confirms the formation of PEI grafted HNTs. The nanocomposites are characterized by SEM for morphological study and, the dispersion manners of nanoclays by Transmission Electron Microscopy (TEM). Storage modulus is studied by Dynamic mechanical thermal analysis (DMTA) instrument. The tensile measurement explored better tensile property of nanocomposites as compared to the virgin blend. XRD is performed to determine the crystalline behavior of the nanocomposites as well as for blend. The above investigations reveal that the HNTs act as reinforcing as well as nucleating agent in the blend system.
Fabrication of nanocomposites from immiscible polymer blend system has been represented in this work. A new type of natural clay named Halloysite nanotubes (HNTs) are modified by Polyethyleneimine (PEI) and these PEI grafted HNTs are incorporated into the immiscible blend system during melt mixing process to prepare halloysite based nanocomposites. Fourier Transform Infrared Spectroscopy (FTIR) study confirms the formation of PEI grafted HNTs. The nanocomposites are characterized by SEM for morphological study and, the dispersion manners of nanoclays by Transmission Electron Microscopy (TEM). Storage modulus is studied by Dynamic mechanical thermal analysis (DMTA) instrument. The tensile measurement explored better tensile property of nanocomposites as compared to the virgin blend. XRD is performed to determine the crystalline behavior of the nanocomposites as well as for blend. The above investigations reveal that the HNTs act as reinforcing as well as nucleating agent in the blend system.