摘要
Large single crystal colloidal copper particles with diameters between 0.5 - 2 μm were created using a green synthesis process. The process used ascorbic acid to reduce Schweizer’s reagent created in situ using copper salts in the presence of various concentrations of gum arabic. The Schweizer’s reagents were created by varying the concentrations of ammonium hydroxide and copper nitrate solutions, copper hydroxide, or copper sulfate. The pH of the solution was controlled by the addition of ascorbic acid. Particle formation was favored at high temperature using copper sulfate at pH values ranging from 7.5 to 9, while the optimal formation occurred at a pH value of 8.5. At high concentrations, copper particle formation was found to occur from the aggregation of smaller particles which continued to nucleate once aggregated, and this resulted in the creation of globular particles and large aggregates of micron-sized particles. The addition of gum arabic resulted in the creation of large single crystal particles that did not aggregate. SEM was used to observe the effect of increasing gum arabic concentrations and EDX was used to confirm the elemental purity of the particles.
Large single crystal colloidal copper particles with diameters between 0.5 - 2 μm were created using a green synthesis process. The process used ascorbic acid to reduce Schweizer’s reagent created in situ using copper salts in the presence of various concentrations of gum arabic. The Schweizer’s reagents were created by varying the concentrations of ammonium hydroxide and copper nitrate solutions, copper hydroxide, or copper sulfate. The pH of the solution was controlled by the addition of ascorbic acid. Particle formation was favored at high temperature using copper sulfate at pH values ranging from 7.5 to 9, while the optimal formation occurred at a pH value of 8.5. At high concentrations, copper particle formation was found to occur from the aggregation of smaller particles which continued to nucleate once aggregated, and this resulted in the creation of globular particles and large aggregates of micron-sized particles. The addition of gum arabic resulted in the creation of large single crystal particles that did not aggregate. SEM was used to observe the effect of increasing gum arabic concentrations and EDX was used to confirm the elemental purity of the particles.