期刊文献+

Novel Inorganic Pyrophosphatase from Soil Metagenomic and Family and Subfamily Prediction 被引量:1

下载PDF
导出
摘要 Inorganic pyrophosphatase (PPase) is widely studied, to be extremely important for survival of plants and microorganisms. PPases catalyze an essential reaction the hydrolysis of inorganic pyrophosphate (PPi) to inorganic phosphate (Pi). Studies involving the mechanism of PPase were performed in microorganisms culture. We didn’t found reports of PPase derived from soil meta-genomic libraries. Soil environment has immense diversity of microorganisms, yet most remains unexplored and the metagenome are the technologies used and investigate uncultured microorganisms potential. The aim is to identify novel genes using the metagenomic approaches from a bioinformatics perspective and hopefully will serve as a useful resource. With this purpose, we used the metagenomic library of Eucalyptus spp. arboretum (EAA). We did a screening to select a positive clone and submitted them to the process of shotgun. The data obtained was submitted to bioinformatics analyses. These analyses identified were the novel MetaPPase gene and were classified according to the predict family and subfamily. Inorganic pyrophosphatase (PPase) is widely studied, to be extremely important for survival of plants and microorganisms. PPases catalyze an essential reaction the hydrolysis of inorganic pyrophosphate (PPi) to inorganic phosphate (Pi). Studies involving the mechanism of PPase were performed in microorganisms culture. We didn’t found reports of PPase derived from soil meta-genomic libraries. Soil environment has immense diversity of microorganisms, yet most remains unexplored and the metagenome are the technologies used and investigate uncultured microorganisms potential. The aim is to identify novel genes using the metagenomic approaches from a bioinformatics perspective and hopefully will serve as a useful resource. With this purpose, we used the metagenomic library of Eucalyptus spp. arboretum (EAA). We did a screening to select a positive clone and submitted them to the process of shotgun. The data obtained was submitted to bioinformatics analyses. These analyses identified were the novel MetaPPase gene and were classified according to the predict family and subfamily.
机构地区 Technology Department
出处 《Open Journal of Applied Sciences》 2014年第2期68-75,共8页 应用科学(英文)
基金 the Program of Postgraduate in Agropecuary Microbiology(PPMA)and Coordenacao de Aperfeicoamento de Nivel Superior(CAPES)for the financial support.
  • 相关文献

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部