期刊文献+

A Dynamical Model to Analyze the Influence of Sliding Friction on Motion on a Curve—An Analytical Method

A Dynamical Model to Analyze the Influence of Sliding Friction on Motion on a Curve—An Analytical Method
下载PDF
导出
摘要 To demonstrate the influence of sliding friction of motion on a curve, a circular path is considered for simplicity on which a person slides from the highest point to the lowest point. A slide which represents a quadrant of radius 5 m and a person of mass 60 kg are considered for comparison in this paper. A Differential equation for motion considering the fact that the normal force depends both on the sin component of weight and also on the tangential velocity, is established and is solved using integrating factor method, and the motion is analysed for different surface roughness of the slide and is compared using superimposed graphs, also the limiting value of friction coefficient at which the person just exits the slide is determined. The correction factor for exit velocity with friction as compared with the exit velocity for zero friction is determined. The fraction of energy lost to friction at the exit is evaluated. The Variation of normal force with the position of the person on the slide is plotted for different surface roughness of the slide, and the position on the slide where the normal force or the force experienced by the person is maximum, is determined and hence its maximum value is evaluated for different surface roughness. For simplicity, a point contact between the body and the slide is considered. To demonstrate the influence of sliding friction of motion on a curve, a circular path is considered for simplicity on which a person slides from the highest point to the lowest point. A slide which represents a quadrant of radius 5 m and a person of mass 60 kg are considered for comparison in this paper. A Differential equation for motion considering the fact that the normal force depends both on the sin component of weight and also on the tangential velocity, is established and is solved using integrating factor method, and the motion is analysed for different surface roughness of the slide and is compared using superimposed graphs, also the limiting value of friction coefficient at which the person just exits the slide is determined. The correction factor for exit velocity with friction as compared with the exit velocity for zero friction is determined. The fraction of energy lost to friction at the exit is evaluated. The Variation of normal force with the position of the person on the slide is plotted for different surface roughness of the slide, and the position on the slide where the normal force or the force experienced by the person is maximum, is determined and hence its maximum value is evaluated for different surface roughness. For simplicity, a point contact between the body and the slide is considered.
出处 《Open Journal of Applied Sciences》 2015年第8期434-442,共9页 应用科学(英文)
关键词 SLIDING FRICTION Surface ROUGHNESS Integrating FACTOR Method Correction FACTOR Critical Coefficient of FRICTION EXIT Velocity Sliding Friction Surface Roughness Integrating Factor Method Correction Factor Critical Coefficient of Friction Exit Velocity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部