摘要
Jaalwala Distributary was selected to see the consequences of concrete lining on the underlying saline groundwater table. Its middle and tail portions were concrete lined whereas the head portion was still unlined. Visual MODFLOW 2011.1 was used to simulate the effects of concrete lining on saline groundwater in two-dimensional format. Simulation results showed a gradual rise of electrical conductivity (EC) up to 7000 μS/cm and decline in water table depth to nine feet (2.74 m). It observed negligible inflows from the distributary through its western boundary due to formation of a permanent barrier in the way of seepage of any kind. Results have further predicted that freshwater layer available beneath the Jaalwala Distributary (before its lining) will finish ultimately and the below present saline water also move upward to take this vacated place. Hence it was concluded to line the canals of saline water areas from their sides which will not only protect them from erosion but canal water theft as well.
Jaalwala Distributary was selected to see the consequences of concrete lining on the underlying saline groundwater table. Its middle and tail portions were concrete lined whereas the head portion was still unlined. Visual MODFLOW 2011.1 was used to simulate the effects of concrete lining on saline groundwater in two-dimensional format. Simulation results showed a gradual rise of electrical conductivity (EC) up to 7000 μS/cm and decline in water table depth to nine feet (2.74 m). It observed negligible inflows from the distributary through its western boundary due to formation of a permanent barrier in the way of seepage of any kind. Results have further predicted that freshwater layer available beneath the Jaalwala Distributary (before its lining) will finish ultimately and the below present saline water also move upward to take this vacated place. Hence it was concluded to line the canals of saline water areas from their sides which will not only protect them from erosion but canal water theft as well.