期刊文献+

Volatility in High-Frequency Intensive Care Mortality Time Series: Application of Univariate and Multivariate GARCH Models

Volatility in High-Frequency Intensive Care Mortality Time Series: Application of Univariate and Multivariate GARCH Models
下载PDF
导出
摘要 Mortality time series display time-varying volatility. The utility of statistical estimators from the financial time-series paradigm, which account for this characteristic, has not been addressed for high-frequency mortality series. Using daily mean-mortality series of an exemplar intensive care unit (ICU) from the Australian and New Zealand Intensive Care Society adult patient database, joint estimation of a mean and conditional variance (volatility) model for a stationary series was undertaken via univariate autoregressive moving average (ARMA, lags (p, q)), GARCH (Generalised Autoregressive Conditional Heteroscedasticity, lags (p, q)). The temporal dynamics of the conditional variance and correlations of multiple provider series, from rural/ regional, metropolitan, tertiary and private ICUs, were estimated utilising multivariate GARCH models. For the stationary first differenced series, an asymmetric power GARCH model (lags (1, 1)) with t distribution (degrees-of- freedom, 11.6) and ARMA (7,0) for the mean-model, was the best-fitting. The four multivariate component series demonstrated varying trend mortality decline and persistent autocorrelation. Within each MGARCH series no model specification dominated. The conditional correlations were surprisingly low (<0.1) between tertiary series and substantial (0.4 - 0.6) between rural-regional and private series. The conditional-variances of both the univariate and multivariate series demonstrated a slow rate of time decline from periods of early volatility and volatility spikes. Mortality time series display time-varying volatility. The utility of statistical estimators from the financial time-series paradigm, which account for this characteristic, has not been addressed for high-frequency mortality series. Using daily mean-mortality series of an exemplar intensive care unit (ICU) from the Australian and New Zealand Intensive Care Society adult patient database, joint estimation of a mean and conditional variance (volatility) model for a stationary series was undertaken via univariate autoregressive moving average (ARMA, lags (p, q)), GARCH (Generalised Autoregressive Conditional Heteroscedasticity, lags (p, q)). The temporal dynamics of the conditional variance and correlations of multiple provider series, from rural/ regional, metropolitan, tertiary and private ICUs, were estimated utilising multivariate GARCH models. For the stationary first differenced series, an asymmetric power GARCH model (lags (1, 1)) with t distribution (degrees-of- freedom, 11.6) and ARMA (7,0) for the mean-model, was the best-fitting. The four multivariate component series demonstrated varying trend mortality decline and persistent autocorrelation. Within each MGARCH series no model specification dominated. The conditional correlations were surprisingly low (<0.1) between tertiary series and substantial (0.4 - 0.6) between rural-regional and private series. The conditional-variances of both the univariate and multivariate series demonstrated a slow rate of time decline from periods of early volatility and volatility spikes.
出处 《Open Journal of Applied Sciences》 2017年第8期385-411,共27页 应用科学(英文)
关键词 Time Series MORTALITY INTENSIVE Care Unit ARIMA GARCH MULTIVARIATE GARCH VOLATILITY Time Series Mortality Intensive Care Unit ARIMA GARCH Multivariate GARCH Volatility
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部