摘要
Changes in climate factors such as temperature, rainfall, humidity, and wind speed are natural processes that could significantly impact the incidence of infectious diseases. Dengue is a widespread disease that has often been documented when it comes to the impact of climate change. It has become a significant concern, especially for the Malaysian health authorities, due to its rapid spread and serious effects, leading to loss of life. Several statistical models were performed to identify climatic factors associated with infectious diseases. However, because of the complex and nonlinear interactions between climate variables and disease components, modelling their relationships have become the main challenge in climate-health studies. Hence, this study proposed a Generalized Linear Model (GLM) via Poisson and Negative Binomial to examine the effects of the climate factors on dengue incidence by considering the collinearity between variables. This study focuses on the dengue hot spots in Malaysia for the year 2014. Since there exists collinearity between climate factors, the analysis was done separately using three different models. The study revealed that rainfall, temperature, humidity, and wind speed were statistically significant with dengue incidence, and most of them shown a negative effect. Of all variables, wind speed has the most significant impact on dengue incidence. Having this kind of relationships, policymakers should formulate better plans such that precautionary steps can be taken to reduce the spread of dengue diseases.
Changes in climate factors such as temperature, rainfall, humidity, and wind speed are natural processes that could significantly impact the incidence of infectious diseases. Dengue is a widespread disease that has often been documented when it comes to the impact of climate change. It has become a significant concern, especially for the Malaysian health authorities, due to its rapid spread and serious effects, leading to loss of life. Several statistical models were performed to identify climatic factors associated with infectious diseases. However, because of the complex and nonlinear interactions between climate variables and disease components, modelling their relationships have become the main challenge in climate-health studies. Hence, this study proposed a Generalized Linear Model (GLM) via Poisson and Negative Binomial to examine the effects of the climate factors on dengue incidence by considering the collinearity between variables. This study focuses on the dengue hot spots in Malaysia for the year 2014. Since there exists collinearity between climate factors, the analysis was done separately using three different models. The study revealed that rainfall, temperature, humidity, and wind speed were statistically significant with dengue incidence, and most of them shown a negative effect. Of all variables, wind speed has the most significant impact on dengue incidence. Having this kind of relationships, policymakers should formulate better plans such that precautionary steps can be taken to reduce the spread of dengue diseases.
作者
Ayuna Sulekan
Jamaludin Suhaila
Nurmarni Athirah Abdul Wahid
Ayuna Sulekan;Jamaludin Suhaila;Nurmarni Athirah Abdul Wahid(Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia;UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Malaysia)