期刊文献+

Implementation of a Classical Theory for Superfluids

Implementation of a Classical Theory for Superfluids
下载PDF
导出
摘要 The superfluidity of helium-4 is explained until today by a quantum theory: the Bose-Einstein condensation. This theory is rather satisfactory in describing the superfluid state of helium-4 because this one is a system made up of bosons (particles of integer spin). However, the discovery of the superfluidity of helium-3 in 1971 called into question the veracity of this quantum theory. In fact, helium-3 being a system composed of fermions (particles of half-integer spin), it cannot be subject to Bose-Einstein condensation. It is to correct this deficiency that we introduce here a classical (non-quantum) theory of superfluids. This new theory makes no difference between the λ transition of bosons and that of fermions. It is based on a fundamental law: “in a superfluid, density is conserved”. In this work, we have shown that this simple law explains not only the zero viscosity of superfluids but also the surprising phenomena observed in the superfluid state, I quote the liquidity of helium at normal pressure down to 0 K, vaporization without boiling, high thermal conductivity, the fountain effect, the ability to go up one side of the wall of a container to come down on the other side and the existence of a critical velocity. The superfluidity of helium-4 is explained until today by a quantum theory: the Bose-Einstein condensation. This theory is rather satisfactory in describing the superfluid state of helium-4 because this one is a system made up of bosons (particles of integer spin). However, the discovery of the superfluidity of helium-3 in 1971 called into question the veracity of this quantum theory. In fact, helium-3 being a system composed of fermions (particles of half-integer spin), it cannot be subject to Bose-Einstein condensation. It is to correct this deficiency that we introduce here a classical (non-quantum) theory of superfluids. This new theory makes no difference between the λ transition of bosons and that of fermions. It is based on a fundamental law: “in a superfluid, density is conserved”. In this work, we have shown that this simple law explains not only the zero viscosity of superfluids but also the surprising phenomena observed in the superfluid state, I quote the liquidity of helium at normal pressure down to 0 K, vaporization without boiling, high thermal conductivity, the fountain effect, the ability to go up one side of the wall of a container to come down on the other side and the existence of a critical velocity.
作者 Elie W’ishe Sorongane Elie W’ishe Sorongane(Physics Department, University of Kinshasa, Kinshasa, Democratic Republic of the Congo)
机构地区 Physics Department
出处 《Open Journal of Applied Sciences》 CAS 2022年第7期1254-1261,共8页 应用科学(英文)
关键词 SUPERFLUID Constant Density Zero Viscosity Temperature Gradient Pressure Gradient Superfluid Constant Density Zero Viscosity Temperature Gradient Pressure Gradient
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部