期刊文献+

Combining Self-Organizing Map and Lipschitz Condition for Estimation in Direction of Arrival

Combining Self-Organizing Map and Lipschitz Condition for Estimation in Direction of Arrival
下载PDF
导出
摘要 There are many DOA estimation methods based on different signal features, and these methods are often evaluated by experimental results, but lack the necessary theoretical basis. Therefore, a direction of arrival (DOA) estimation system based on self-organizing map (SOM) and designed for arbitrarily distributed sensor array is proposed. The essential principle of this method is that the map from distance difference of arrival (DDOA) to DOA is Lipschitz continuity, it indicates the similar topology between them, and thus Kohonen SOM is a suitable network to classify DOA through DDOA. The simulation results show that the DOA estimation errors are less than 1° for most signals between 0° to 180°. Compared to MUSIC, Root-MUSIC, ESPRIT, and RBF, the errors of signals under signal-to-noise ratios (SNR) declines from 20 dB to 2 dB are robust, SOM is better than RBF and almost close to MUSIC. Further, the network can be trained in advance, which makes it possible to be implemented in real-time. There are many DOA estimation methods based on different signal features, and these methods are often evaluated by experimental results, but lack the necessary theoretical basis. Therefore, a direction of arrival (DOA) estimation system based on self-organizing map (SOM) and designed for arbitrarily distributed sensor array is proposed. The essential principle of this method is that the map from distance difference of arrival (DDOA) to DOA is Lipschitz continuity, it indicates the similar topology between them, and thus Kohonen SOM is a suitable network to classify DOA through DDOA. The simulation results show that the DOA estimation errors are less than 1° for most signals between 0° to 180°. Compared to MUSIC, Root-MUSIC, ESPRIT, and RBF, the errors of signals under signal-to-noise ratios (SNR) declines from 20 dB to 2 dB are robust, SOM is better than RBF and almost close to MUSIC. Further, the network can be trained in advance, which makes it possible to be implemented in real-time.
作者 Xiuhui Tan Peng Wang Hongping Hu Rong Cheng Yanping Bai Xiuhui Tan;Peng Wang;Hongping Hu;Rong Cheng;Yanping Bai(School of Mathematics, North University of China, Taiyuan, China)
机构地区 School of Mathematics
出处 《Open Journal of Applied Sciences》 2023年第7期1012-1028,共17页 应用科学(英文)
关键词 DOA Estimation Kohonen SOM Distance Difference of Arrival Topological Order Lipschitz Condition DOA Estimation Kohonen SOM Distance Difference of Arrival Topological Order Lipschitz Condition
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部