期刊文献+

Physical Factors Affecting the Interior Radon-Concentrations

Physical Factors Affecting the Interior Radon-Concentrations
下载PDF
导出
摘要 Researchers have realized that radon-contaminated air inside buildings is a principal way of human exposure to certain healthy-risks. A model is developed to estimate radon concentrations which consider various parameters: in indoor air radon (radon-222) concentration, air permeability of ground, air pressure difference between outdoor and indoor at ground level, ventilation of building ground and number of air changes per hour due to ventilation. The radon-222 transport into building might dominated by diffusion, pressure driven flow or/and a mixture of both depending on the actual values of the various parameters. So, in several and regular periods of time: January, April, July and October, radon-222 concentrations have been measured in ten rooms of five elementary schools and in five rooms of one high school at Qena city (Upper Egypt). This has been carried out using alpha scintillation counters. We have noticed that in three rooms the value has exceeded 200 Bqm -3 at the basement and only one room at the first floor, and all values have changed with respect to time and localization: They have decreased from July to January and from basement to first floor. For example, radon-222 concentrations obtained by exposing track detectors varied in the range from 20 Bqm-3 up to 100 Bqm-3. The experimental results of the present work have been well fitted with the presented model (calculations) which supports the validity of the presented model. So, to decrease the level of indoor air radon-222 concentrations and to reduce its harmful effects it is recommended to follow the suggestions in the present study and to limit as possible the use of ceramic in the building construction, increase the hours of ventilation and to restrict the use of underground floors in buildings, the underground Metro and garage parking should be carefully (and even mandatory) ventilated. Researchers have realized that radon-contaminated air inside buildings is a principal way of human exposure to certain healthy-risks. A model is developed to estimate radon concentrations which consider various parameters: in indoor air radon (radon-222) concentration, air permeability of ground, air pressure difference between outdoor and indoor at ground level, ventilation of building ground and number of air changes per hour due to ventilation. The radon-222 transport into building might dominated by diffusion, pressure driven flow or/and a mixture of both depending on the actual values of the various parameters. So, in several and regular periods of time: January, April, July and October, radon-222 concentrations have been measured in ten rooms of five elementary schools and in five rooms of one high school at Qena city (Upper Egypt). This has been carried out using alpha scintillation counters. We have noticed that in three rooms the value has exceeded 200 Bqm -3 at the basement and only one room at the first floor, and all values have changed with respect to time and localization: They have decreased from July to January and from basement to first floor. For example, radon-222 concentrations obtained by exposing track detectors varied in the range from 20 Bqm-3 up to 100 Bqm-3. The experimental results of the present work have been well fitted with the presented model (calculations) which supports the validity of the presented model. So, to decrease the level of indoor air radon-222 concentrations and to reduce its harmful effects it is recommended to follow the suggestions in the present study and to limit as possible the use of ceramic in the building construction, increase the hours of ventilation and to restrict the use of underground floors in buildings, the underground Metro and garage parking should be carefully (and even mandatory) ventilated.
出处 《Open Journal of Biophysics》 2013年第1期33-41,共9页 生物物理学期刊(英文)
关键词 INDOOR RADON CONCENTRATIONS THEORETICAL Model Environmental Parameters Indoor Radon Concentrations Theoretical Model Environmental Parameters
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部