期刊文献+

Renewing Oncological Hyperthermia—Oncothermia 被引量:1

下载PDF
导出
摘要 Hyperthermia was the very first oncotherapy in human medicine, but its applicability in modern oncology was dubious. The discovery of electromagnetism gave new hope a century ago, however, until up to now, it has been suffering from lack of wide acceptance. Oncological hyperthermia suffers from multiple unsolved medical and technical problems. The accurate selection of malignant tissue and its proper heating in depth are real challenges together with the control and repeatability of the treatments. However, the center of the problems is not technical: the living system tries to keep its homeostatic equilibrium and creates active feedback mechanisms to eliminate or at least correct the constrain heating in depth. The proper reaction on the “gage of battle” has to involve the physiology, handle it complexly together with bioelectromagnetism and update connected technology. The solution has to be the integration of the natural bio-effects into the technological constrains, acting in synergy with the physiological feedback mechanisms, and without forcing effects out of the homeostatic control. The solution lies in strict selection and adequate action in nanoscopic range, without exciting the robust transport-mechanisms to operate against the energy delivery to the tumor. Together with the local optimization, the systemic effects have to be considered, because malignancy is not a local disease. This concept needs interactions with the immune-system being effective on the disseminated cell in far distance too. Our objective is to present a complex technical solution to this complex problem. Hyperthermia was the very first oncotherapy in human medicine, but its applicability in modern oncology was dubious. The discovery of electromagnetism gave new hope a century ago, however, until up to now, it has been suffering from lack of wide acceptance. Oncological hyperthermia suffers from multiple unsolved medical and technical problems. The accurate selection of malignant tissue and its proper heating in depth are real challenges together with the control and repeatability of the treatments. However, the center of the problems is not technical: the living system tries to keep its homeostatic equilibrium and creates active feedback mechanisms to eliminate or at least correct the constrain heating in depth. The proper reaction on the “gage of battle” has to involve the physiology, handle it complexly together with bioelectromagnetism and update connected technology. The solution has to be the integration of the natural bio-effects into the technological constrains, acting in synergy with the physiological feedback mechanisms, and without forcing effects out of the homeostatic control. The solution lies in strict selection and adequate action in nanoscopic range, without exciting the robust transport-mechanisms to operate against the energy delivery to the tumor. Together with the local optimization, the systemic effects have to be considered, because malignancy is not a local disease. This concept needs interactions with the immune-system being effective on the disseminated cell in far distance too. Our objective is to present a complex technical solution to this complex problem.
作者 Oliver Szasz
机构地区 Biotechnics Department
出处 《Open Journal of Biophysics》 2013年第4期245-252,共8页 生物物理学期刊(英文)
  • 相关文献

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部