期刊文献+

Coupled Electromagnetic Circuits and Their Connection to Quantum Mechanical Resonance Interactions and Biorhythms 被引量:2

下载PDF
导出
摘要 The existence of specific biorhythms and the role of geomagnetic and/or solar magnetic activities are well-established by appropriate correlations in chronobiology. From a physical viewpoint, there are two different accesses to biorhythms to set up connections to molecular processes: quantum mechanical perturbation theoretical methods and their resonance dominators to characterize specific interactions between constituents. These methods permit the treatment of molecular processes by circuits with characteristic resonances and “beat-frequencies”, which result from primarily fast physical processes. As examples, the tunneling processes between DNA base pairs (H bonds), the ATP decomposition and the irradiation of tumor cells are accounted for. The existence of specific biorhythms and the role of geomagnetic and/or solar magnetic activities are well-established by appropriate correlations in chronobiology. From a physical viewpoint, there are two different accesses to biorhythms to set up connections to molecular processes: quantum mechanical perturbation theoretical methods and their resonance dominators to characterize specific interactions between constituents. These methods permit the treatment of molecular processes by circuits with characteristic resonances and “beat-frequencies”, which result from primarily fast physical processes. As examples, the tunneling processes between DNA base pairs (H bonds), the ATP decomposition and the irradiation of tumor cells are accounted for.
出处 《Open Journal of Biophysics》 2013年第4期253-274,共22页 生物物理学期刊(英文)
  • 相关文献

同被引文献7

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部