摘要
The procerebrum (PC) of the land slug Limax is the olfactory center involved in olfactory discrimination and learning. In the PC, an oscillation of local field potential (LFP) with 0.5 - 1 Hz is observed by electrophysiological extracellular recording. Additionally, spatiotemporal neural activities in the PC have been examined using optical recordings. However, extracellular recording is preferable to measure neural activities for a long time with a high speed, while it is not abundant in spatial information. In this study, we therefore attempted to elicit spatial information from extracellular recording. For this purpose, we evaluated spatial information included in the LFP compared with the spatiotemporal neural activities measured by the fluorescent voltage imaging. As a result, aversive odors induced the coherent spatiotemporal neural activities in the PC, and the increase in coherency was observed as a change in the LFP waveform. It was also evaluated as a decrease in entropy by analyzing the LFP oscillation patterns and wavelet analysis. Thus, although the LFP provides only one series of signals, the coherency of the spatiotemporal neural activities in the PC can be evaluated by applying extracellular recording with wavelet analysis.
The procerebrum (PC) of the land slug Limax is the olfactory center involved in olfactory discrimination and learning. In the PC, an oscillation of local field potential (LFP) with 0.5 - 1 Hz is observed by electrophysiological extracellular recording. Additionally, spatiotemporal neural activities in the PC have been examined using optical recordings. However, extracellular recording is preferable to measure neural activities for a long time with a high speed, while it is not abundant in spatial information. In this study, we therefore attempted to elicit spatial information from extracellular recording. For this purpose, we evaluated spatial information included in the LFP compared with the spatiotemporal neural activities measured by the fluorescent voltage imaging. As a result, aversive odors induced the coherent spatiotemporal neural activities in the PC, and the increase in coherency was observed as a change in the LFP waveform. It was also evaluated as a decrease in entropy by analyzing the LFP oscillation patterns and wavelet analysis. Thus, although the LFP provides only one series of signals, the coherency of the spatiotemporal neural activities in the PC can be evaluated by applying extracellular recording with wavelet analysis.