期刊文献+

Evaluation of Peppermint Leaf Flavonoids as SARS-CoV-2 Spike Receptor-Binding Domain Attachment Inhibitors to the Human ACE2 Receptor: A Molecular Docking Study

Evaluation of Peppermint Leaf Flavonoids as SARS-CoV-2 Spike Receptor-Binding Domain Attachment Inhibitors to the Human ACE2 Receptor: A Molecular Docking Study
下载PDF
导出
摘要 Virtual screening is a computational technique widely used for identifying small molecules which are most likely to bind to a protein target. In the present work, a molecular docking study is carried out to propose potential candidates for preventing the RBD/ACE2 attachment. These candidates are sixteen different flavonoids present in the peppermint leaf. Results showed that Luteolin 7-O-neohesperidoside is the peppermint flavonoid with a higher binding affinity regarding the RBD/ACE2 complex (about -9.18 Kcal/mol). On the other hand, Sakuranetin presented the lowest affinity (about -6.38 Kcal/mol). Binding affinities of the other peppermint flavonoids ranged from -6.44 Kcal/mol up to -9.05 Kcal/mol. The binding site surface analysis showed pocket-like regions on the RBD/ACE2 complex that yield several interactions (mostly hydrogen bonds) between the flavonoid and the amino acid residues of the proteins. This study can open channels for the understanding of the roles of flavonoids against COVID-19 infection. Virtual screening is a computational technique widely used for identifying small molecules which are most likely to bind to a protein target. In the present work, a molecular docking study is carried out to propose potential candidates for preventing the RBD/ACE2 attachment. These candidates are sixteen different flavonoids present in the peppermint leaf. Results showed that Luteolin 7-O-neohesperidoside is the peppermint flavonoid with a higher binding affinity regarding the RBD/ACE2 complex (about -9.18 Kcal/mol). On the other hand, Sakuranetin presented the lowest affinity (about -6.38 Kcal/mol). Binding affinities of the other peppermint flavonoids ranged from -6.44 Kcal/mol up to -9.05 Kcal/mol. The binding site surface analysis showed pocket-like regions on the RBD/ACE2 complex that yield several interactions (mostly hydrogen bonds) between the flavonoid and the amino acid residues of the proteins. This study can open channels for the understanding of the roles of flavonoids against COVID-19 infection.
作者 Marcelo Lopes Pereira Júnior Rafael Timóteo de Sousa Junior Georges Daniel Amvame Nze William Ferreira Giozza Luiz Antônio Ribeiro Júnior Marcelo Lopes Pereira Júnior;Rafael Timóteo de Sousa Junior;Georges Daniel Amvame Nze;William Ferreira Giozza;Luiz Antônio Ribeiro Júnior(Department of Electrical Engineering, University of Brasília, Brasília, Brazil;Institute of Physics, University of Brasília, Brasília, Brazil)
出处 《Open Journal of Biophysics》 2022年第2期132-152,共21页 生物物理学期刊(英文)
关键词 CORONAVIRUS Sars-CoV-2 Peppermint Flavonoids RBD/ACE2 Inhibitors Coronavirus Sars-CoV-2 Peppermint Flavonoids RBD/ACE2 Inhibitors
  • 相关文献

参考文献1

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部