摘要
The aim of the present paper is to state an asymptotic property Ρ of Shannon’s sampling theorem type, based on normalized cardinal sines, and keeping constant the sampling frequency of a not necessarilly band- limited signal. It generalizes in the limit the results stated by Marvasti et al. [7] and Agud et al. [1]. We show that Ρ is fulfilled for any constant signal working for every given sampling frequency. Moreover, we conjecture that Gaussian maps of the form e-Λt2 ,Λ∈R+, hold Ρ. We support this conjecture by proving the equality given by for the three first coefficients of the power series representation of e-Λt2 .
The aim of the present paper is to state an asymptotic property Ρ of Shannon’s sampling theorem type, based on normalized cardinal sines, and keeping constant the sampling frequency of a not necessarilly band- limited signal. It generalizes in the limit the results stated by Marvasti et al. [7] and Agud et al. [1]. We show that Ρ is fulfilled for any constant signal working for every given sampling frequency. Moreover, we conjecture that Gaussian maps of the form e-Λt2 ,Λ∈R+, hold Ρ. We support this conjecture by proving the equality given by for the three first coefficients of the power series representation of e-Λt2 .
基金
partially supported by MCI(Ministerio de Ciencia e Innovacion)and FEDER(Fondo Europeo Desarrollo Regional),grant number MTM2008--03679/MTM
Fundacion Seneca de la Region de Murcia,grant number 08667/PI/08
JCCM(Junta de Comunidades de Castilla-La Mancha),grant number PEII09-0220-0222.