摘要
For every partition and its conjugation , there is an important invariant , which denotes the number of different parts. That is , . We will derive a series of symmetric q-identities from the invariant in partition conjugation by studying modified Durfee rectangles. The extensive applications of the several symmetric q-identities in q-series ?[1] will also be discussed. Without too much effort one can obtain much well-known knowledge as well as new formulas by proper substitutions and elementary calculations, such as symmetric identities, mock theta functions, a two-variable reciprocity theorem, identities from Ramanujan’s Lost Notebook and so on.
For every partition and its conjugation , there is an important invariant , which denotes the number of different parts. That is , . We will derive a series of symmetric q-identities from the invariant in partition conjugation by studying modified Durfee rectangles. The extensive applications of the several symmetric q-identities in q-series ?[1] will also be discussed. Without too much effort one can obtain much well-known knowledge as well as new formulas by proper substitutions and elementary calculations, such as symmetric identities, mock theta functions, a two-variable reciprocity theorem, identities from Ramanujan’s Lost Notebook and so on.