期刊文献+

Competition Numbers of Several Kinds of Triangulations of a Sphere

Competition Numbers of Several Kinds of Triangulations of a Sphere
下载PDF
导出
摘要 It is hard to compute the competition number for a graph in general and characterizing a graph by its competition number has been one of important research problems in the study of competition graphs. Sano pointed out that it would be interesting to compute the competition numbers of some triangulations of a sphere as he got the exact value of the competition numbers of regular polyhedra. In this paper, we study the competition numbers of several kinds of triangulations of a sphere, and get the exact values of the competition numbers of a 24-hedron obtained from a hexahedron by adding a vertex in each face of the hexahedron and joining the vertex added in a face with the four vertices of the face, a class of dodecahedra constructed from a hexahedron by adding a diagonal in each face of the hexahedron, and a triangulation of a sphere with 3n (n≥2) vertices. It is hard to compute the competition number for a graph in general and characterizing a graph by its competition number has been one of important research problems in the study of competition graphs. Sano pointed out that it would be interesting to compute the competition numbers of some triangulations of a sphere as he got the exact value of the competition numbers of regular polyhedra. In this paper, we study the competition numbers of several kinds of triangulations of a sphere, and get the exact values of the competition numbers of a 24-hedron obtained from a hexahedron by adding a vertex in each face of the hexahedron and joining the vertex added in a face with the four vertices of the face, a class of dodecahedra constructed from a hexahedron by adding a diagonal in each face of the hexahedron, and a triangulation of a sphere with 3n (n≥2) vertices.
出处 《Open Journal of Discrete Mathematics》 2017年第2期54-64,共11页 离散数学期刊(英文)
关键词 COMPETITION Graph COMPETITION Number Edge CLIQUE COVER Vertex CLIQUE COVER TRIANGULATION of a SPHERE Competition Graph Competition Number Edge Clique Cover Vertex Clique Cover Triangulation of a Sphere
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部