期刊文献+

The Tilings of Deficient Squares by Ribbon <i>L</i>-Tetrominoes Are Diagonally Cracked

The Tilings of Deficient Squares by Ribbon <i>L</i>-Tetrominoes Are Diagonally Cracked
下载PDF
导出
摘要 We consider tilings of deficient rectangles by the set T4 of ribbon L-tetro-minoes. A tiling exists if and only if the rectangle is a square of odd side. The missing cell has to be on the main NW-SE diagonal, in an odd position if the square is (4m+1)×(4m+1) and in an even position if the square is (4m+3)×(4m+3). The majority of the tiles in a tiling follow the rectangular pattern, that is, are paired and each pair tiles a 2×4 rectangle. The tiles in an irregular position together with the missing cell form a NW-SE diagonal crack. The crack is located in a thin region symmetric about the diagonal, made out of a sequence of 3×3 squares that overlap over one of the corner cells. The crack divides the square in two parts of equal area. The number of tilings of a (4m+1)×(4m+1) deficient square by T4? is equal to the number of tilings by dominoes of a 2m×2m square. The number of tilings of a (4m+3)×(4m+3) deficient square by T4? is twice the number of tilings by dominoes of a (2m+1)×(2m+1)?deficient square, with the missing cell placed on the main diagonal. In both cases the counting is realized by an explicit function which is a bijection in the first case and a double cover in the second. If an extra 2×2 tile is added to T4 , we call the new tile set?T+<sub style="margin-left:-6px;">4. A tiling of a deficient rectangle by T+4 exists if and only if the rectangle is a square of odd side. The missing cell has to be on the main NW-SE diagonal, in an odd position if the square is (4m+1)×(4m+1) and in an even position if the square is (4m+3)×(4m+3). The majority of the tiles in a tiling follow the rectangular pattern, that is, are either paired tetrominoes and each pair tiles a 2×4 rectangle, or are 2×2 squares. The tiles in an irregular position together with the missing cell form a NW-SE diagonal crack. The crack is located in a thin region symmetric about the diagonal, made out of a sequence of 3×3 squares that overlap over one of the corner cells. The number of tilings of a (4m+1)×(4m+1) deficient square by T+4 is greater than the number of tilings by dominoes and monomers of a 2m×2m square. The number of tilings of a (4m+3)×(4m+3) deficient square by T+4 is greater than twice the number of tilings by dominoes and monomers of a (2m+1)×(2m+1) deficient square, with the missing cell placed on the main diagonal. We also consider tilings by T4? and T+4 of other significant deficient regions. In particular we show that a deficient first quadrant, a deficient half strip, a deficient strip or a deficient bent strip cannot be tiled by T+4. Therefore T4? and T+4 give examples of tile sets that tile deficient rectangles but do not tile any deficient first quadrant, any deficient half strip, any deficient bent strip or any deficient strip. We consider tilings of deficient rectangles by the set T4 of ribbon L-tetro-minoes. A tiling exists if and only if the rectangle is a square of odd side. The missing cell has to be on the main NW-SE diagonal, in an odd position if the square is (4m+1)×(4m+1) and in an even position if the square is (4m+3)×(4m+3). The majority of the tiles in a tiling follow the rectangular pattern, that is, are paired and each pair tiles a 2×4 rectangle. The tiles in an irregular position together with the missing cell form a NW-SE diagonal crack. The crack is located in a thin region symmetric about the diagonal, made out of a sequence of 3×3 squares that overlap over one of the corner cells. The crack divides the square in two parts of equal area. The number of tilings of a (4m+1)×(4m+1) deficient square by T4? is equal to the number of tilings by dominoes of a 2m×2m square. The number of tilings of a (4m+3)×(4m+3) deficient square by T4? is twice the number of tilings by dominoes of a (2m+1)×(2m+1)?deficient square, with the missing cell placed on the main diagonal. In both cases the counting is realized by an explicit function which is a bijection in the first case and a double cover in the second. If an extra 2×2 tile is added to T4 , we call the new tile set?T+<sub style="margin-left:-6px;">4. A tiling of a deficient rectangle by T+4 exists if and only if the rectangle is a square of odd side. The missing cell has to be on the main NW-SE diagonal, in an odd position if the square is (4m+1)×(4m+1) and in an even position if the square is (4m+3)×(4m+3). The majority of the tiles in a tiling follow the rectangular pattern, that is, are either paired tetrominoes and each pair tiles a 2×4 rectangle, or are 2×2 squares. The tiles in an irregular position together with the missing cell form a NW-SE diagonal crack. The crack is located in a thin region symmetric about the diagonal, made out of a sequence of 3×3 squares that overlap over one of the corner cells. The number of tilings of a (4m+1)×(4m+1) deficient square by T+4 is greater than the number of tilings by dominoes and monomers of a 2m×2m square. The number of tilings of a (4m+3)×(4m+3) deficient square by T+4 is greater than twice the number of tilings by dominoes and monomers of a (2m+1)×(2m+1) deficient square, with the missing cell placed on the main diagonal. We also consider tilings by T4? and T+4 of other significant deficient regions. In particular we show that a deficient first quadrant, a deficient half strip, a deficient strip or a deficient bent strip cannot be tiled by T+4. Therefore T4? and T+4 give examples of tile sets that tile deficient rectangles but do not tile any deficient first quadrant, any deficient half strip, any deficient bent strip or any deficient strip.
作者 Viorel Nitica
出处 《Open Journal of Discrete Mathematics》 2017年第3期165-176,共12页 离散数学期刊(英文)
关键词 Tiling DEFICIENT RECTANGLES RIBBON Tetromino Tiling Deficient Rectangles Ribbon Tetromino
  • 相关文献

参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部