期刊文献+

Infinite Sets of Related <i>b</i>-wARH Pairs

Infinite Sets of Related <i>b</i>-wARH Pairs
下载PDF
导出
摘要 Let b ≥ 2 be a numeration base. A b-weak additive Ramanujan-Hardy (or b-wARH) number N is a non-negative integer for which there exists at least one non-negative integer A, such that the sum of A and the sum of base b digits of N, added to the reversal of the sum, give N. We say that a pair of such numbers are related of degrees d ≥ 0 if their difference is d. We show for all numeration bases an infinity of degrees d for which there exists an infinity of pairs of b-wARH numbers related of degree d. Let b ≥ 2 be a numeration base. A b-weak additive Ramanujan-Hardy (or b-wARH) number N is a non-negative integer for which there exists at least one non-negative integer A, such that the sum of A and the sum of base b digits of N, added to the reversal of the sum, give N. We say that a pair of such numbers are related of degrees d ≥ 0 if their difference is d. We show for all numeration bases an infinity of degrees d for which there exists an infinity of pairs of b-wARH numbers related of degree d.
出处 《Open Journal of Discrete Mathematics》 2020年第1期1-3,共3页 离散数学期刊(英文)
关键词 PALINDROME INTEGER Number Theory NUMERATION Base Palindrome Integer Number Theory Numeration Base
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部