期刊文献+

Discrete Exterior Calculus of Proteins and Their Cohomology

Discrete Exterior Calculus of Proteins and Their Cohomology
下载PDF
导出
摘要 This paper proposes a novel application of cohomology to protein structure analysis. Since proteins interact each other by forming transient protein complexes, their shape (e.g., shape complementarity) plays an important role in their functions. In our mathematical toy models, proteins are represented as a loop of triangles (2D model) or tetrahedra (3D model), where their interactions are defined as fusion of loops. The purpose of this paper is to describe the conditions for loop fusion using the language of cohomology. In particular, this paper uses cohomology to describe the conditions for “allosteric regulation”, which has been attracted attention in safer drug discovery. I hope that this paper will provide a new perspective on the mechanism of allosteric regulation. Advantages of the model include its topological nature. That is, we can deform the shape of loops by deforming the shape of triangles (or tetrahedra) as long as their folded structures are preserved. Another advantage is the simplicity of the “allosteric regulation” mechanism of the model. Furthermore, the effect of the “post-translational modification” can be understood as a resolution of singularities of a flow of triangles (or tetrahedra). No prior knowledge of either protein science, exterior calculus, or cohomology theory is required. The author hopes that this paper will facilitate the interaction between mathematics and protein science. This paper proposes a novel application of cohomology to protein structure analysis. Since proteins interact each other by forming transient protein complexes, their shape (e.g., shape complementarity) plays an important role in their functions. In our mathematical toy models, proteins are represented as a loop of triangles (2D model) or tetrahedra (3D model), where their interactions are defined as fusion of loops. The purpose of this paper is to describe the conditions for loop fusion using the language of cohomology. In particular, this paper uses cohomology to describe the conditions for “allosteric regulation”, which has been attracted attention in safer drug discovery. I hope that this paper will provide a new perspective on the mechanism of allosteric regulation. Advantages of the model include its topological nature. That is, we can deform the shape of loops by deforming the shape of triangles (or tetrahedra) as long as their folded structures are preserved. Another advantage is the simplicity of the “allosteric regulation” mechanism of the model. Furthermore, the effect of the “post-translational modification” can be understood as a resolution of singularities of a flow of triangles (or tetrahedra). No prior knowledge of either protein science, exterior calculus, or cohomology theory is required. The author hopes that this paper will facilitate the interaction between mathematics and protein science.
作者 Naoto Morikawa Naoto Morikawa(Genocript, Zama, Japan)
机构地区 Genocript
出处 《Open Journal of Discrete Mathematics》 2022年第3期47-63,共17页 离散数学期刊(英文)
关键词 Discrete Differential Geometry Protein Structure Analysis Cohomology Class Exterior Derivative Allosteric Regulation Discrete Differential Geometry Protein Structure Analysis Cohomology Class Exterior Derivative Allosteric Regulation
  • 相关文献

参考文献3

二级参考文献1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部