期刊文献+

Numerical Simulation of Hydraulic Transport of Sand-Water Mixtures in Pipelines

Numerical Simulation of Hydraulic Transport of Sand-Water Mixtures in Pipelines
下载PDF
导出
摘要 The development of empirical model for the hydraulic transport of sand-water mixtures is important for the design of economical solid-liquid transportation system in chemical and waste-disposal industries. The hydraulic transport characteristics of sand-water mixtures in circular pipelines are numerically investigated by using the FLUENT commercial software. Eulerian granular multiphase (EGM) model with the k-e turbulent model is used for the computation. Present method is validated by the computed values with the measured data. The effect of the concentration and pipe sizes on the relative solid effect is numerically investigated. It is found that the effect of the volumetric delivered concentration on both hydraulic gradient and solid effect increases as the Reynolds number decreases. When the Reynolds number is small, the increase in the volumetric delivered concentration has an effect of decreasing the hydraulic gradient whereas the solid effect increases with the volumetric delivered concentration stepping up. The effect of the pipe diameter is not the critical parameter for deciding the values of the relative solid effect in the sand-water mixture transportation. The development of empirical model for the hydraulic transport of sand-water mixtures is important for the design of economical solid-liquid transportation system in chemical and waste-disposal industries. The hydraulic transport characteristics of sand-water mixtures in circular pipelines are numerically investigated by using the FLUENT commercial software. Eulerian granular multiphase (EGM) model with the k-e turbulent model is used for the computation. Present method is validated by the computed values with the measured data. The effect of the concentration and pipe sizes on the relative solid effect is numerically investigated. It is found that the effect of the volumetric delivered concentration on both hydraulic gradient and solid effect increases as the Reynolds number decreases. When the Reynolds number is small, the increase in the volumetric delivered concentration has an effect of decreasing the hydraulic gradient whereas the solid effect increases with the volumetric delivered concentration stepping up. The effect of the pipe diameter is not the critical parameter for deciding the values of the relative solid effect in the sand-water mixture transportation.
出处 《Open Journal of Fluid Dynamics》 2013年第4期266-270,共5页 流体动力学(英文)
关键词 COMPUTATIONAL Fluid Dynamics HYDRAULIC TRANSPORT SOLID Effect Sand-Water MIXTURE Computational Fluid Dynamics Hydraulic Transport Solid Effect Sand-Water Mixture
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部