期刊文献+

Numerical Analysis of Electromagnetic Control of the Boundary Layer Flow on a Ship Hull 被引量:1

Numerical Analysis of Electromagnetic Control of the Boundary Layer Flow on a Ship Hull
下载PDF
导出
摘要 In this article, electromagnetic control of turbulent boundary layer on a ship hull is numerically investigated. This study is conducted on the geometry of tanker model hull. For this purpose, a combination of electric and magnetic fields is applied to a region of boundary layer on stern so that produce wall parallel Lorentz forces in streamwise direction as body forces in stern flow. The governing equations including RANS equations with SST k-ω?turbulent model coupled with electric potential equation are numerically solved by using Ansys Fluent codes. Accuracy of this turbulent model of Fluent in predicting Turbulent flow around a ship is also tested by comparing with available experimental results that it shows a good agreement with experimental data. The results obtained for ship flow show that by applying streamwise Lorentz forces that are large enough, flow is accelerated. The results are caused to delay or avoid the flow separation in stern, increase the propeller inlet velocity, create uniform flow distribution behind the ship’s hull in order to improve the propeller performance, and finally decrease the pressure resistance and total resistance. In this article, electromagnetic control of turbulent boundary layer on a ship hull is numerically investigated. This study is conducted on the geometry of tanker model hull. For this purpose, a combination of electric and magnetic fields is applied to a region of boundary layer on stern so that produce wall parallel Lorentz forces in streamwise direction as body forces in stern flow. The governing equations including RANS equations with SST k-ω?turbulent model coupled with electric potential equation are numerically solved by using Ansys Fluent codes. Accuracy of this turbulent model of Fluent in predicting Turbulent flow around a ship is also tested by comparing with available experimental results that it shows a good agreement with experimental data. The results obtained for ship flow show that by applying streamwise Lorentz forces that are large enough, flow is accelerated. The results are caused to delay or avoid the flow separation in stern, increase the propeller inlet velocity, create uniform flow distribution behind the ship’s hull in order to improve the propeller performance, and finally decrease the pressure resistance and total resistance.
出处 《Open Journal of Fluid Dynamics》 2014年第1期74-82,共9页 流体动力学(英文)
关键词 ELECTROMAGNETIC Control BOUNDARY Layer TURBULENT FLOW FLOW SEPARATION Resistance Electromagnetic Control Boundary Layer Turbulent Flow Flow Separation Resistance
  • 相关文献

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部