期刊文献+

Improvement of a Propulsion Equipment with a Supersonic Nozzle for Single Pulse Detonation

Improvement of a Propulsion Equipment with a Supersonic Nozzle for Single Pulse Detonation
下载PDF
导出
摘要 A pulse detonation engine (PDE) is one of candidates of aerospace engines for supersonic cruse. In the paper, a supersonic nozzle ejector is designed to increase thrust of single pulse detonation for methane-oxygen and hydrogen-oxygen mixtures. The design method is based on the conventional characteristic method and inlet condition is averaged value of detonations of methane-oxygen and hydrogen-oxygen mixtures. Comparison of thrusts with a design nozzle and no nozzle (straight- type) is conducted to ensure the designed nozzle performance. Furthermore, the flow velocity, temperature and velocity of the designed nozzle are calculated to ensure its appropriateness with the commercial software ANSYS CFX. Consequently, we succeed in increasing the thrusts of the single pulse detonation with the nozzle, which are 1.4 and 2.0 times as large as ones of straight- type for methane-oxygen and hydrogen-oxygen mixtures respectively. A pulse detonation engine (PDE) is one of candidates of aerospace engines for supersonic cruse. In the paper, a supersonic nozzle ejector is designed to increase thrust of single pulse detonation for methane-oxygen and hydrogen-oxygen mixtures. The design method is based on the conventional characteristic method and inlet condition is averaged value of detonations of methane-oxygen and hydrogen-oxygen mixtures. Comparison of thrusts with a design nozzle and no nozzle (straight- type) is conducted to ensure the designed nozzle performance. Furthermore, the flow velocity, temperature and velocity of the designed nozzle are calculated to ensure its appropriateness with the commercial software ANSYS CFX. Consequently, we succeed in increasing the thrusts of the single pulse detonation with the nozzle, which are 1.4 and 2.0 times as large as ones of straight- type for methane-oxygen and hydrogen-oxygen mixtures respectively.
出处 《Open Journal of Fluid Dynamics》 2014年第5期447-453,共7页 流体动力学(英文)
关键词 THRUSTER DETONATION IMPULSE SUPERSONIC Flow Method of Characteristics CFD NOZZLE Thruster Detonation Impulse Supersonic Flow Method of Characteristics CFD Nozzle
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部