期刊文献+

Creation and Evaluation of Construction Guidelines Using CFD for Low Pressure Plasma Gas Feed-in Systems to Homogenize the Precursor Gas Flow 被引量:2

Creation and Evaluation of Construction Guidelines Using CFD for Low Pressure Plasma Gas Feed-in Systems to Homogenize the Precursor Gas Flow
下载PDF
导出
摘要 The local gas-flow behavior is almost unknown for low pressure plasma systems, except parallel plate reactors for semiconductor purposes. To overcome this lack of knowledge, this study starts with the influence investigation of the gas feed-in systems technical layout on the homogeneity of the gas supply for large volume plasma enhanced chemical vapor deposition (PECVD) chambers. Computational fluid dynamics (CFD) simulations are used as a tool to determine velocity and pressure distribution inside the gas feed-in pipe as well as in the PECVD-chamber itself. The parameters varied were: flow rate, pipe length, number of holes, hole diameter and aspect ratio of the pipe section. The calculated pressure values are compared with the experimentally measured ones to validate the simulation results. An excellent conformity of the calculated and measured pressures is observed. With the aim to evaluate the homogeneity of gas distribution through the pipe holes the nonuniformity coefficient (Φ) was created. The results show the influence of each layout parameter in the homogeneity of the gas distribution. Hence in future correct technical layouts of gas feed-in systems can easily be applied. With these results construction guidelines has been formulated. The local gas-flow behavior is almost unknown for low pressure plasma systems, except parallel plate reactors for semiconductor purposes. To overcome this lack of knowledge, this study starts with the influence investigation of the gas feed-in systems technical layout on the homogeneity of the gas supply for large volume plasma enhanced chemical vapor deposition (PECVD) chambers. Computational fluid dynamics (CFD) simulations are used as a tool to determine velocity and pressure distribution inside the gas feed-in pipe as well as in the PECVD-chamber itself. The parameters varied were: flow rate, pipe length, number of holes, hole diameter and aspect ratio of the pipe section. The calculated pressure values are compared with the experimentally measured ones to validate the simulation results. An excellent conformity of the calculated and measured pressures is observed. With the aim to evaluate the homogeneity of gas distribution through the pipe holes the nonuniformity coefficient (Φ) was created. The results show the influence of each layout parameter in the homogeneity of the gas distribution. Hence in future correct technical layouts of gas feed-in systems can easily be applied. With these results construction guidelines has been formulated.
作者 Gustavo Simiema de Freitas Barbosa Klaus Vissing Bernd Mayer Gustavo Simiema de Freitas Barbosa;Klaus Vissing;Bernd Mayer(Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Bremen, Germany;Universität Bremen, Bremen, Germany)
出处 《Open Journal of Fluid Dynamics》 2016年第4期391-405,共16页 流体动力学(英文)
关键词 Gas Feed-in Systems Gas Flow Distribution CFD PECVD Coating Gas Feed-in Systems Gas Flow Distribution CFD PECVD Coating
  • 相关文献

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部