期刊文献+

Mixed Convection and Heat Transfer Studies in Non-Uniformly Heated Buoyancy Driven Cavity Flow

Mixed Convection and Heat Transfer Studies in Non-Uniformly Heated Buoyancy Driven Cavity Flow
下载PDF
导出
摘要 We analyse the mixed convection flow in a cavity flow which is driven by buoyancy generated due to a non-uniformly heated top wall which is moving uniformly. A fourth order accurate finite difference scheme is used in this study and our code is first validated against available data in the literature. The results are obtained for different sets of Reynolds number Re, Prandtl number Pr and Grashof number Gr which are in the ranges 100 - 3000, 0.0152 - 10 and 102 - 106 respectively. Here Gr is related to the Richardson number according to Ri=Gr/Re2. While increasing the Richardson number, the growth of upstream secondary eddy (USE) is observed together with a degradation of downstream secondary eddy (DSE). When mixed convection is dominant, the upstream secondary eddy and the downstream secondary eddy merge to form a large recirculation region. When the effect of Pr is studied in the forced convection regime, Ri<<1, the temperature in the central region of the cavity remains nearly a constant. However, in the mixed convection regime, the temperature in cavity undergoes non-monotonic changes. Finally, using the method of divided differences, it is shown that numerical accuracy of the derived numerical scheme used in this work is four. We analyse the mixed convection flow in a cavity flow which is driven by buoyancy generated due to a non-uniformly heated top wall which is moving uniformly. A fourth order accurate finite difference scheme is used in this study and our code is first validated against available data in the literature. The results are obtained for different sets of Reynolds number Re, Prandtl number Pr and Grashof number Gr which are in the ranges 100 - 3000, 0.0152 - 10 and 102 - 106 respectively. Here Gr is related to the Richardson number according to Ri=Gr/Re2. While increasing the Richardson number, the growth of upstream secondary eddy (USE) is observed together with a degradation of downstream secondary eddy (DSE). When mixed convection is dominant, the upstream secondary eddy and the downstream secondary eddy merge to form a large recirculation region. When the effect of Pr is studied in the forced convection regime, Ri<<1, the temperature in the central region of the cavity remains nearly a constant. However, in the mixed convection regime, the temperature in cavity undergoes non-monotonic changes. Finally, using the method of divided differences, it is shown that numerical accuracy of the derived numerical scheme used in this work is four.
出处 《Open Journal of Fluid Dynamics》 2017年第2期231-262,共32页 流体动力学(英文)
关键词 NAVIER-STOKES Equation High Order Compact Scheme MIXED CONVECTION Divided Difference Principle Navier-Stokes Equation High Order Compact Scheme Mixed Convection Divided Difference Principle
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部