摘要
We construct a new example of 2 × 2-matrix quasi-exactly solvable (QES) Hamiltonian which is associated to a potential depending on the Jacobi elliptic functions. We establish three necessary and sufficient algebraic conditions for the previous operator to have an invariant vector space whose generic elements are polynomials. This operator is called quasi-exactly solvable.
We construct a new example of 2 × 2-matrix quasi-exactly solvable (QES) Hamiltonian which is associated to a potential depending on the Jacobi elliptic functions. We establish three necessary and sufficient algebraic conditions for the previous operator to have an invariant vector space whose generic elements are polynomials. This operator is called quasi-exactly solvable.