摘要
SMART is the reactor that has been researched for many years by KAERI in order to provide the small-mid scale of power for typically seawater desalination. Now Korea Atomic Energy Research Institute (KAERI) has issued Standard Safety Analysis Report (SSAR) and acquired Standard Design Approval (SDA) for SMART. In order to conduct the design verification and validation for license, the integrated simulation test environment that is composed of 1) the system specific simulation codes formerly developed in the name of Nuclear Plant Analyzer (NPA) including NSSS and BOP simulation, 2) Instructor Station (IS), 3) Supervisory Control and Data Acquisition (SCADA), 4) operator and instructor Human Machine Interface (HMI), and 5) soft-controller has been considered as an important area for operator training and system validation. These sub-components has been designed and implemented for verifying and validating the SMART design and training of operators and for generating the backup data for licensing. This paper introduces the structure of integrated simulation test environment for SMART, explains the efforts to assist system-specific simulation code interface, and also addresses the effort for implementing and optimizing the test environment by maintaining its own simulation functionality and performance in order to review the simulation results efficiently.
SMART is the reactor that has been researched for many years by KAERI in order to provide the small-mid scale of power for typically seawater desalination. Now Korea Atomic Energy Research Institute (KAERI) has issued Standard Safety Analysis Report (SSAR) and acquired Standard Design Approval (SDA) for SMART. In order to conduct the design verification and validation for license, the integrated simulation test environment that is composed of 1) the system specific simulation codes formerly developed in the name of Nuclear Plant Analyzer (NPA) including NSSS and BOP simulation, 2) Instructor Station (IS), 3) Supervisory Control and Data Acquisition (SCADA), 4) operator and instructor Human Machine Interface (HMI), and 5) soft-controller has been considered as an important area for operator training and system validation. These sub-components has been designed and implemented for verifying and validating the SMART design and training of operators and for generating the backup data for licensing. This paper introduces the structure of integrated simulation test environment for SMART, explains the efforts to assist system-specific simulation code interface, and also addresses the effort for implementing and optimizing the test environment by maintaining its own simulation functionality and performance in order to review the simulation results efficiently.